

TECHNISCHE UNIVERSITÄT DORTMUND

Faculty of Mechanical Engineering

IT in Production and Logistics (itpl)

Institute for Research and Transfer, RIF e.V.

Automation and Robotics

Master Thesis

Development of Generic PLC Integration Concept for

a Graphical Simulation System

Univ.-Prof. Dr.-Ing. Markus Rabe

 Univ.-Prof. Dr.-Ing. Jürgen Roßmann

Submitted by: Shilpa Appannavar

Matriculation number: 163185

September 2015

Eidesstattliche Versicherung

______________________________ ____________________

Name, Vorname Matr.-Nr.
Ich versichere hiermit an Eides statt, dass ich die vorliegende Bachelorarbeit/Masterarbeit*

mit dem Titel

__

__

__

__

selbstständig und ohne unzulässige fremde Hilfe erbracht habe. Ich habe keine anderen als

die angegebenen Quellen und Hilfsmittel benutzt sowie wörtliche und sinngemäße Zitate

kenntlich gemacht. Die Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde

vorgelegen.

__________________________ _______________________

Ort, Datum Unterschrift

 *Nichtzutreffendes bitte
streichen

Belehrung:

Wer vorsätzlich gegen eine die Täuschung über Prüfungsleistungen betreffende Regelung

einer Hochschulprüfungsordnung verstößt, handelt ordnungswidrig. Die Ordnungswidrigkeit

kann mit einer Geldbuße von bis zu 50.000,00 € geahndet werden. Zuständige

Verwaltungsbehörde für die Verfolgung und Ahndung von Ordnungswidrigkeiten ist der

Kanzler/die Kanzlerin der Technischen Universität Dortmund. Im Falle eines mehrfachen oder

sonstigen schwerwiegenden

Täuschungsversuches kann der Prüfling zudem exmatrikuliert werden. (§ 63 Abs. 5

Hochschulgesetz - HG -)

Die Abgabe einer falschen Versicherung an Eides statt wird mit Freiheitsstrafe bis zu 3 Jahren

oder mit Geldstrafe bestraft.

Die Technische Universität Dortmund wird gfls. elektronische Vergleichswerkzeuge (wie z.B.

die Software „turnitin“) zur Überprüfung von Ordnungswidrigkeiten in Prüfungsverfahren

nutzen.

Die oben stehende Belehrung habe ich zur Kenntnis genommen:

_____________________________ _________________________

Ort, Datum Unterschrift

i

Table of Contents

1 Introduction .. 1

2 State of the Art ... 4

2.1 Actual Commissioning ... 4

2.2 Virtual Commissioning... 7

2.3 Requirements for Realization of a Virtual Commissioning Project 9

2.4 Simulation Software ... 9

2.5 Programmable Logic Controllers ... 14

2.5.1 S7-PLCSIM .. 18

2.5.2 Siemens S7-300 PLC .. 19

2.5.3 Siemens STEP 7 ... 20

2.6 Communication Modes... 22

2.6.1 S7ProSim .. 22

2.6.2 OPC .. 23

2.6.3 Softing OPC Server Ethernet .. 24

3 Methodology .. 26

3.1 Steps for Virtual Verification of the PLC Program 26

3.2 Communication with the External PLC .. 29

4 Implementation ... 35

4.1 Plugin VSPluginPLCConnection ... 38

4.2 Plugin VSPluginPLCSim ... 44

4.3 Plugin VSPluginOPCClient .. 45

5 Validation ... 48

5.1 Simulation Model ... 48

ii

5.2 PLC Programming .. 51

5.3 Creating the Controller Object in VEROSIM Project 56

6 Conclusion and Outlook ... 63

iii

List of figures

Figure 2.1: Delays in the process of commissioning [3] .. 6

Figure 2.2: Possible combinations between reality and simulation [9] 7

Figure 2.3: VEROSIM micro kernel architecture [13] .. 10

Figure 2.4: VEROSIM modeling environment .. 12

Figure 2.5: VEROSIM IO editor .. 13

Figure 2.6: VEROSIM model library .. 14

Figure 2.7: PLC system [15] .. 15

Figure 2.8: PLC operation [15] .. 18

Figure 2.9: PLCSIM simulation view window .. 19

Figure 2.10: Siemens S7-300 PLC ... 20

Figure 2.11: Siemens STEP 7 standard software package [19] 21

Figure 3.1: Steps in virtual verification of PLC programs ... 27

Figure 3.2: Integration of external PLC into a graphic simulation environment 29

Figure 3.3: Exchange of data between simulation model and external PLC 30

Figure 3.4: Role of controller object in the graphic simulation environment. 31

Figure 3.5: Concept of a generic controller object ... 32

Figure 3.6: Overview of the generic controller object ... 33

Figure 3.7: Prototype implementation of the generic controller object 34

Figure 4.1: Integration of external PLCs into VEROSIM ... 36

Figure 4.2: The plugin VSPluginPLCConnection ... 39

Figure 4.3: Creating connectors in a PLCNode ... 40

Figure 4.4: Implementation of the class IOMapping ... 42

Figure 4.5: Creating IO maps ... 43

Figure 4.6: Communication with S7-PLCSIM .. 44

Figure 4.7: Communication with S7-300 via OPC client-server 46

Figure 5.1: VEROSIM model .. 49

iv

Figure 5.2: Structure of sequencer for the PLC program to control the model 52

Figure 5.3: Hardware configuration for S7-PLCSIM .. 53

Figure 5.4: Hardware configuration for PLC S7-300 .. 54

Figure 5.5: Symbol table .. 55

Figure 5.6: Project in SIMATIC Manager ... 56

Figure 5.7: Configured ConnectorPLCSim.. 58

Figure 5.8: Configured ConnectorOPC.. 60

v

List of tables

Table 5.1: List of inputs from the VEROSIM model... 50

Table 5.2: List of outputs from the VEROSIM model... 50

vi

Abbreviations

PLC: Programmable Logic Controller

COM: Component Object Model

OPC: OLE (Object Linking and Embedding) for Process Control

SIL: Software In Loop

HIL: Hardware In Loop

RIL: Reality In Loop

1

1 Introduction

The frequent introduction of new and advanced products and product variants in the

market significantly shortens the lifecycle of existing products. As the product lifecycles

are reduced in the continuously changing marketplace, modern manufacturing systems

should have sufficient responsiveness to adapt their behaviors efficiently to a wide range

of circumstances. In order to remain competitive in today’s market, the manufacturer

should focus on improving the production system continuously alongside the

improvements in the product itself [1]. The present day manufacturing systems need to

be fast and flexible in terms of production, ramp up time and cost effectiveness.

Automation of the manufacturing process increases the product quality and quantity in

comparison with the manual operations. Modern production lines are highly integrated

systems, consisting of automated work stations such as robots with tool changing

capabilities, a storage and hardware handling system, and a computer control system that

controls the operation of the entire production line [2]. Involving many complex and

interacting systems, commissioning of the production lines is an expensive and time

consuming task. Decisions regarding the flow of material and placement of necessary

equipment should be made very carefully during the design phase. A poor design can

lead to large volume of inventory, inefficiency and inflexibility. Changing the layout in

the later stages after the installation of all the machinery can be expensive. Thus it is

necessary to get the design right to achieve the intended benefits.

Simulation helps to analyze complex manufacturing systems from the design and

ongoing operation prospective. Technological developments and increasingly efficient

computing platforms have significantly enhanced the process of modeling, simulation

and analysis. This has enabled digital processing of complex tasks in manufacturing

processes with the aid of high-fidelity models of the manufacturing system and the

surrounding environment. The use of simulation models in the design and planning of

manufacturing systems help to identify bottlenecks and detect the errors in scheduling of

the processes. Some of the simulation tools used in academics and industries for

example, ARENA and Automod are suitable only for the abstract design stage of the

2

production line. They do not include the behavior of the control systems into the

simulation. These models are not suitable for a detailed design and analysis [2].

Production lines are usually controlled by different types of controllers for example,

microcontrollers and Programmable Logic Controllers (PLCs). For more complex

applications, PLCs are largely preferred over microcontrollers. Unlike microcontrollers,

PLCs can be reprogrammed any number of times and also have a larger flexibility of

adding more inputs and outputs. This serves as an advantage for PLCs over

microcontrollers. PLCs are the most widely accepted controllers in the modern

manufacturing industries. The simulation tools mentioned earlier lack this detailed level

of control logic which regulates the material flow between different processes.

A detailed simulation model enables virtual verification of the production line which can

foretell the production capability of the system and also verify the correctness of the

control programs in conjunction with the surrounding equipment [2]. As PLCs are the

most preferred type of controllers in the industries, integrating PLCs into the graphical

simulation environment helps in generating a more realistic model. Verifying the PLC

programs with the 3D simulation models enables detection of errors in the early phase.

Correcting the errors in the control program in the early phase reduces the actual

commissioning time of a production line by up to 25% [3].

The objective of this master thesis is to develop a generic PLC integration concept for a

graphical simulation system, such that simulation models can be verified along with the

control programs. Developing a controller object in the simulation environment which

can interpret the PLC programs is a tedious task. Instead, external PLCs can be used to

control the behavior of the simulation model. External PLCs can reproduce a more

accurate behavior of the control system. More specifically, external hardware PLCs can

be used to carry out the verification process under laboratory conditions.

To get a good overview of the thesis, it is very important to get an introduction into the

important knowledge areas like virtual commissioning, PLCs, simulation software and

different modes of communication. The state of the art chapter gives an overview of

actual commissioning and concepts underlying the virtual commissioning. Further, this

chapter introduces to the different software and tools used to realize the concept of

generic PLC integration.

3

In this master thesis a generic controller object is developed in the simulation

environment which communicates with external PLCs. The external PLC can be a

simulated or hardware PLC from any PLC manufacturer. The controller object receives

the input signals from various sensors in the simulation environment and sends these

input signals to the external PLC. The external PLC then generates appropriate output

signals after processing the input signals and the user program stored in the memory of

the PLC. These outputs are written back to the outputs of simulation environments

controller object. The controller object’s outputs are connected to the actuators in the

simulation environment. The Methodology chapter provides an overview of the

controller object in the simulation environment and explains its generic nature and ability

to connect to more than one external PLC.

Adhering to the concept demonstrated in the methodology chapter, a generic controller

object is developed. The Implementation chapter explains the development and features

of the generic controller object. To demonstrate the ability of the generic controller object

to connect to different PLCs, connections to two types of external PLCs, a simulated PLC

and a hardware PLC are implemented in this master thesis. Connections to both these

external PLCs can be configured in the controller object. Communication between the

controller object and the simulated PLC is via a COM object and the communication

between the controller object and the hardware PLC is via an OPC client-server

configuration.

The Validation chapter demonstrates the operation of the controller object with the help

of a mechatronic model developed in the VEROSIM simulation environment. Inputs and

outputs of the controller object are connected to the sensors and actuators in the model.

PLC programs to control the behavior of the mechatronic model are developed using

PLC program development software and downloaded on to the simulated PLC and

hardware PLC. Connections to both simulated PLC and hardware PLC are configured in

the controller object. The behavior of the mechatronic model is validated by making one

of the configured connections active at a time. The response of the PLC program and the

mechatronic model is validated by switching between the configured connections to the

two external PLCs.

4

2 State of the Art

Virtual verification of the production lines can be done if 3D simulation models of the

production line are more realistic. Integrating PLCs into the simulation environment

makes the models more realistic and the mechatronic behavior of the production line can

be verified in conjunction with control programs. This helps in reducing the errors

detected in the actual commissioning phase, thus reducing the unnecessary delays and

additional costs. This chapter includes a detailed description of the concepts underlying

virtual commissioning and its advantage over traditional commissioning without prior

virtual simulation. After understanding the concept of virtual commissioning, the

requirements for realization of a virtual commissioning project are listed. Further

different tools and software used to demonstrate the PLC integration concept is this thesis

are discussed.

2.1 Actual Commissioning

Traditional development of manufacturing systems is carried out in different phases:

Design of production facility, mechanical engineering, electrical engineering and

automation engineering [4]. The design of the production facility is the first step in the

traditional commissioning process. It involves decisions concerning the layout of the

factory floor, placement of the machines and the staff in the manufacturing operation.

This is an important component in the overall operation in terms of manufacturing

process effectiveness and meeting the needs of the employees. The basic objective of the

facility design is to ensure smooth flow of materials and information through the system.

A poor design can lead to large volume of inventory, inefficiency and inflexibility. Also

changing the layout in the later stages after the installation of all the machinery can be

very expensive, thus it is important to get the design right before the installation of the

machines.

The second step is the mechanical engineering phase, which involves commissioning of

all the heavy machineries, robots, sensors and actuators required for the manufacturing

process. The placement of these components is done according to the plan developed in

the previous step of facility design. The third step is the electrical engineering phase,

5

where the electrical energy supply is established to the various machines, sensors and

actuators.

The next step is automation engineering. In this step various controllers required for

controlling the machines are installed. The connections to the various equipment, sensors

and actuators from the controllers are also established for example via a field bus. The

different kinds of controllers used in industry are for example, microcontrollers, PLCs

etc. Since the modern production lines are highly automated with complex tasks, the

PLCs are the more obvious choice for the controllers. At this stage after installing the

controllers the functionality of each device is verified. Any errors encountered are

corrected. Once all the machines are running error free, the production of the goods

begins.

All the steps mentioned in traditional method of commissioning are carried out in a

sequential manner. The verification and documentation of each of the stage is also

performed separately [5]. Following the traditional method of commissioning,

installation of PLCs and verification of the PLC programs is done in the last stage of

commissioning. Thus the automation engineer has to wait for the verification of the PLC

programs till all the machines and the surrounding equipment are installed in the

production site. Since the PLC programs are not verified in conjunction with the

surrounding machinery before installation, errors may be encountered, which in some

cases can cause damage to the surrounding machines or the PLC itself or both. This leads

to unnecessary delays and additional costs.

The modern production plants are highly automated and a majority of the functionalities

are controlled by the control programs in these plants. As cited by Reinhart and Wünsch

[3], up to one fourth of the total project life cycle time is accounted by the process of

commissioning. Delays and activities related to electric and control devices consume up

to 90% of the total commissioning time. Out of this nearly 70% of the delays are caused

because of the errors in the control software. This is illustrated in figure 2.1.

6

Figure 2.1: Delays in the process of commissioning [3]

The delays caused due to the errors in the control program can be minimized by verifying

the correctness of control programs and its interaction with the surrounding machines.

Using a virtual environment for the verification is a safe and economic solution.

Simulation is a powerful tool to overcome the hurdles witnessed in the traditional method

of commissioning to a larger extent. It helps to analyze the manufacturing systems from

the design and ongoing operation prospective. Technological developments and

increasingly efficient computing platforms have significantly enhanced the process of

modeling, simulation and analysis. This has enabled digital processing of complex tasks

in manufacturing process with the aid of high-fidelity models of the manufacturing

system and the surrounding environment. 3D simulation models help in validation of the

systems prior to installation, thus accelerating the process of planning and

implementation of manufacturing systems. As indicated in [6], realization of the

production system in terms of 3D models belong to the scope of Digital Factory. Digital

factory is defined as “a generic term for a comprehensive network of digital models and

methods including simulation and 3D visualization. Its purpose is the integrated

planning, implementation, control and continual improvement of all essential factory

processes and resources associated with the product” [7].

7

2.2 Virtual Commissioning

Use of realistic and accurate 3D simulation to validate the functions of production

equipment control system prior to actual implementation is termed as “Virtual

Commissioning” [8]. Virtual Commissioning can be a valuable tool for assembly line

design engineers in a sense that it can provide decision making support to important

decisions like for example, type and number of resources to be used within an assembly

line or selection of communication and interfacing protocols between the resources [4].

Virtual commissioning serves as an advantage during the actual commissioning process

by minimizing the delays and additional costs. Tests conducted to evaluate the cost

benefits of virtual commissioning as described in [3], shows that the software quality in

terms of fulfilled requirements was improved by more than 100% whereas the

commissioning time was reduced by 25%.

In the process of Virtual Commissioning a virtual model of the plant is used to replicate

the mechatronic behavior of the different machines and equipment and a real or simulated

PLC is used for the control programs. The possible combinations between reality and

simulation with the aim of verification of the PLC programs are as shown in the figure

2.2.

Figure 2.2: Possible combinations between reality and simulation [9]

8

1 Traditional commissioning: real plant and a real control system.

2 Reality in Loop (RIL): real plant and a simulated control system.

3 Software in Loop (SIL): Simulated plant and a simulated control system.

4 Hardware in Loop (HIL): simulated plant and a real control system.

Involving a real plant and a real control system (1) is the traditional method of

commissioning. Any errors encountered in the control programs might cause serious

damage to the plant equipment or PLC or both. This leads to additional delays and costs

during the commissioning process. As indicated earlier a major part of the control

engineering during commissioning is accounted to the errors in the control programs.

The second combination is RIL (2) method. This includes a real plant and a simulated

PLC. Since a real plant is involved in this method, the risk of damaging the machines

and equipment in the plant is still not eliminated.

The SIL (3) method of virtual commissioning is one of the safest and economic methods.

This includes a simulated plant and a simulated control system, therefore minimizing the

costs caused by the errors in the control program. This method of verification can be

performed parallel to the earlier steps of actual commissioning once the design of the

production facility is done. Thus SIL method of virtual commissioning saves a lot of time

during the actual commissioning. One of the disadvantages of SIL method as pointed

out in [3] is, the low availability of up-to date control simulation packages for a particular

control version. Therefore the control software cannot provide an exact reproduction of

the control behavior [4].

In the last method of HIL (4) simulation, a virtual plant model is used in conjunction with

a real control system. In this method the advantage over the SIL method is that the control

engineers can perform the testing of complex control and automation scenarios under

laboratory conditions [3]. Also the PLCs used for verification of the control programs

along with the virtual environment can be directly used in the real production facility.

Both SIL and HIL are less costly approaches compared to the rest, as virtual

environments are used instead of real world systems. These approaches minimize the

errors in the PLC programs, reduce the risk of damaged equipment subsequently

9

decreasing the actual commissioning time and increasing the quality of manufacturing

system.

2.3 Requirements for Realization of a Virtual

Commissioning Project

The following are the requirements for the realization of a virtual commissioning project

[4]:

1 3D models of the equipment and other resources to be commissioned, including

information about the geometries, kinematics and electrics.

2 The layout of the production facility, involving the placement of all the resources

and equipment.

3 Knowledge of the material flow in the production facility, including the sequence of

operations and interdependencies in the production process.

4 The real or a simulated control system. Either a real PLC or a simulated one can be

used to demonstrate the two possible methods for verifying PLC programs.

5 Detailed definitions of the PLC’s input and output (I/O) signals including their

respective mapping to the resources within the simulated environment.

6 Detailed definition of the extra functionalities and signals such as, alarm or safety

systems that are to be included in the commissioning process.

7 Software drivers and communication protocols for establishing the communication

between the simulation model and the control system.

2.4 Simulation Software

Modeling and simulation software are of great help in the field of engineering. It is very

common to use block oriented simulation systems such as MATLAB/SIMULINK [10]

or Modelica modeling language [11] to develop controllers . FEM analysis tool (for

example, cosmol [12]) are used to test and verify component layouts. Increasingly more

efficient computing platforms have facilitated the development for 3D modeling and

simulation software which are capable of producing more realistic replica of the real

system. Focusing on 3D simulation technology, various approaches can be found for

development of mobile robots (for example, gazebo [14]) or generic mechatronic systems

10

(for example, simmechanics from mathworks [16]). As stated in [13] these software still

lack a holistic and encompassing approach that enables and encourages the synergetic

use of simulation methods on a single database throughout the entire lifecycles of

technical systems. A new simulation system architecture was developed to overcome

these limitations.

Figure 2.3: VEROSIM micro kernel architecture [13]

The idea of VEROSIM is introduction of a micro kernel, the “Versatile Simulation

Database” (VSD) figure 2.3. VSD is an object oriented real-time database holding a

description of underlying simulation model. It is fully implemented in C++ and provides

the central building blocks for data management, meta information, communication,

persistence, and user interaction. VSD is said to be “active” as it contains algorithms and

interfaces to manipulate data along with static data container. Furthermore VSD also

indicates the user about addition, deletion or change in event through intelligent

messaging systems. In addition VSD also provides essential functionalities for parallel

and distributed simulation. Specialized plugins are built upon the VSD core that aids in

achieving all simulation functionality of the framework by interacting with the VSD core.

The comprehensive 3D simulation system VEROSIM is built on the basis of the basic

simulation system architecture. The key modules like for example data storage,

11

visualization, kinematics, sensor/actuator framework and more for 3D simulation are

developed by extending the VSD kernel in various directions.

All the key components are accessible via a comprehensive graphical user interface in

desktop applications and projection environments. A textual interface is available on

platforms which do not support 3D rendering. Also all these interfaces can be used

simultaneously.

The VEROSIM 3D simulation framework has been used to realize a variety of different

applications, currently focusing more on the areas of environment (e.g. forest inventory

or forest machines), industry (e.g. industrial automation) and space (e.g. space robots).

The figures 2.4 to 2.6 show the user interface of the VEROSIM environment. Figure 2.4

is the main window for modeling the mechatronic systems. The ‘Model explorer” (on the

left side) holds the list of all the elements added to the model by the user. The ‘Property

widget’ (on the right side) shows the properties of the element selected element in the

model explorer. For example the property ‘Modify frame’ allows the user to modify the

position and the property ‘Scaling’ allows the user to modify the size of the selected

element.

12

Figure 2.4: VEROSIM modeling environment

13

The IO editor (figure 2.5) enables the user to make the connections between various

components.

Figure 2.5: VEROSIM IO editor

14

The model library (figure 2.6) gives a list of industrial components and robots offered by

VEROSIM. These components can be readily used by the user in developing complex

systems.

Figure 2.6: VEROSIM model library

2.5 Programmable Logic Controllers

“A programmable logic controller (PLC) is a special form of microprocessor-based

controller, that uses a programmable memory to store instructions and to implement

functions such as logic, sequencing, timing, counting and arithmetic in order to control

machines and processes” [15]. Having the ability to be re-programmed any number of

times and able to control more than one device at a time makes PLCs a more preferred

choice over other controllers like for example, microcontrollers.

15

PLCs are similar to computers but built in a more suitable way for industrial

environments. They are designed in a rugged way to withstand the noise, vibrations,

temperatures and humidity in an industrial environment. Components of a typical PLC

system are as shown in the figure 2.7.

Figure 2.7: PLC system [15]

 The power supply unit converts the incoming high voltage power to the required

voltage levels for processor, circuits in the input and output module and other

components.

 The Central Processing Unit (CPU) generates the output signals for the control

actions depending on the inputs received and the instructions stored in the program

memory of the controller.

 The programming device is used to develop the PLC programs, which are then

downloaded on to the memory of the PLC device.

 The memory of the PLC system consists of several elements such as, ROM for

permanent storage of the operating system and the data used by the system, RAM for

the storage of user programs and data.

16

 Input module is where the device receives the input signals from various sensors and

switches.

 The Output module communicates the signals to the external actuators like for

example, motor, valves etc. The input and output modules can be digital or analog

depending on the type of sensors and actuators connected.

 Transmitting and receiving data from remote PLCs, Human Machine Interface (HMI)

panels, SCADA (Supervisory Control And Data Acquisition) systems etc. are

handled by the Communication interface.

 The Programming device can be for example: a personal computer. The PLC

manufacturers have programming software for their PLCs. For some PLCs a special

communication card is required to download the programs onto a real PLC whereas

for some PLCs just having the appropriate software on the computer is sufficient.

The two common types of mechanical design for PLC system are, a single box type or a

modular/rack type. The single box type is supplied as an integral compact package with

power supply, processor, memory, inputs and outputs. Since the number of inputs and

outputs are fixed in this type of PLC, they are generally preferred for small scale

applications. The PLCs of modular/rack type are more flexible in terms of number of

inputs and outputs. This type of PLC system consists of separate modules for each of the

PLC components like, power supply, CPU, inputs and outputs, communication interface,

etc. The user can decide about the number and type of modules required depending on

its application. Thus the number of input and output modules can be expanded depending

on the application the PLC is used for. [15]

For programming, most of the PLCs adopt the programming languages described by the

international standard IEC 61131-3. The IEC 61131-3 defines textual and graphical

languages for writing the application programs [17]. The PLC manufacturer provides

programming software which allows the user to write the application programs in any of

the standard programming languages. For example, Siemens has the software SIMATIC

STEP 7, which complies with the international standard IEC 61131-3. Following is a

brief description of the standard programming languages as defined by IEC 61131-3:

 Ladder logic (LD): This is one of the most commonly used methods of programming

the PLCs and this is equivalent to drawing a switching circuits. Two vertical lines

17

represent the power rails in the ladder diagram. And circuits are connected between

these two vertical lines.

 Function block diagram (FBD): In FBD the PLC programs are described in terms of

graphical blocks. A FBD is a program instruction unit with one or more inputs and

yields one or more outputs when executed.

 Instruction list (IL): This is a textual programming language similar to the assembly

programming language. The programs written in instruction list consists a series of

instructions, each beginning on a new line. It consists of operators followed by one

or more operands. Each instruction is represented by using mnemonic codes. The

codes differ from one manufacturer to other.

 Sequential Function Chart (SFC): The SFC is used to represent the operation in a

pictorial format. It shows the sequence of events involved in the operations. Different

events are represented by steps or states. Each step is connected to the next one

through transition conditions, which have to be realized before the execution can

move on to the next step from the previous step.

 Structures Text (ST): The ST language contains list of statements separated by

semicolon. The Siemens Structure Text language is known as SCL (Structure

Control Language). It is a high level textual programming language based on

PASCAL (S7 SCL manual referred).

As a general practice complex control tasks are broken down into many simpler tasks

and each task is implemented in a separate block which is termed as Program

Organization Unit (POU) [17]. The PLC executes these POU’s continuously in a cyclic

manner, reading the inputs and updating the outputs [15] (figure 2.8).

18

Figure 2.8: PLC operation [15]

In this master thesis, the PLC integration concept is demonstrated using a simulated PLC

and a real hardware PLC are used. The simulated PLC S7–PLCSIM and the hardware

PLC S7-300 from Siemens are used. The Siemens software STEP 7 is used to write the

control programs for the model developed using VEROSIM. The Siemens STEP 7

(version) standard software package is used for configuration of the simulated and

hardware PLC.

2.5.1 S7-PLCSIM

The main advantage of using a simulated PLC with the virtual model of production line

is that the control programs can be verified without the use of any hardware. Since no

hardware component is involved in the process of verification of the model, this

eliminates the risk of damaging any of the machines or controllers involved in the

production line. S7-PLCSIM is the simulated PLC made by Siemens, which allows the

user to test the control programs without connecting to the S7 hardware.

S7-PLCSIM provides a simple graphical user interface to the STEP 7 user program,

which can be used for monitoring and modifying different objects like for example, input

and output variables. Also the operating mode of the simulated PLC can be controlled

via the interface.

19

The simulation view window is as shown in the figure 2.9. The CPU is added to the

simulation window automatically on start of the S7-PLCSIM application. Later the

variables required to be monitored can be added from the option in the toolbar. [18]

Figure 2.9: PLCSIM simulation view window

2.5.2 Siemens S7-300 PLC

The second type of PLC used to demonstrate the generic PLC integration concept is a

real hardware PLC. As indicated earlier the low availability of up-to date control

simulation packages for a particular control version serves as an disadvantage for using

a simulated PLC [3]. Using a hardware PLC the control engineers can perform the tests

under more realistic conditions.

A Siemens S7-300 PLC is used in this thesis. This is a modular/rack type PLC. The first

module on the PLC rack is the power supply. Followed by the power supply is the CPU

and the input and output module. Last is the communication module which helps in

connecting the PLC with the PC.

20

Figure 2.10: Siemens S7-300 PLC

The CPU used here is CPU 314-C 2 PD/DP. The input output module is

DI8/DO8xDC24V/0.5A. The communication interface used is CP 343-1 Advanced. The

communication interface communicates efficiently with the PLC’s CPU, OPC server and

the programming device via a TCP connection.

2.5.3 Siemens STEP 7

STEP 7 is the standard software package by Siemens used for the purpose of configuring

and programming SIMATIC programmable logic controllers. The STEP 7 standard

package provides a series of applications within the software. The figure 2.11 shows the

applications/tools provided by the STEP 7 standard [19].

21

Figure 2.11: Siemens STEP 7 standard software package [19]

 SIMATIC manager: The SIMATIC manager manages all the data that belongs to the

automation project.

 Symbol editor: The symbol editor manages all the shared symbols. This allows the

user to set the symbolic names and comments for the process signals.

 Programming languages: The SIMATIC programming languages integrated in

STEP 7 are compliant with IEC 61131-3 standard PLC programming languages.

Ladder logic (LAD), Statement list (STL), and Function block diagram (FBD) are an

integral part of the standard STEP 7 package. Other programming languages are

available as optional packages.

 Hardware configuration: The hardware configuration tool enables user to configure

and assign parameters to the hardware of an automation project.

 Hardware diagnostic: The hardware diagnostic provides an overview of the status of

the PLC. This displays general information of the module and its status. Any faults

in the modules are also indicated.

 NetPro (Network configuration): Using the NetPro cyclic data transfer via the MPI

is possible, where the user can the connections and blocks to the CPU.

22

2.6 Communication Modes

In order to simulate the behavior of the virtual model according to the control programs

on an external PLC, communication needs to be established between the virtual model

and the external PLC. Since in this master thesis two different kinds of PLCs are used,

both of them communicate with the virtual model using different modes of

communication. For communicating with the simulated PLC S7-PLCSIM a COM object

called S7ProSim is used. In case of the hardware PLC, the communication between the

virtual model and hardware PLC is established though an OPC (OLE for Process Control)

connection. (OLE: Object Linking and Embedding).

2.6.1 S7ProSim

S7Prosim is a COM object, which provides programmatic access to the simulated PLC

S7-PLCSIM. Using S7ProSim the user can write software programs that can perform

tasks such as running the control program in single scan mode, reading or writing

controller values, and many other work steps.

To be able to use the S7ProSim COM object in the project, a reference is added to the

object in the project. After adding the reference to the project, various methods provided

by the COM object are used to communicate with the S7-PLCSIM. Following are a few

methods provided by the S7ProSim:

 Connect: Connects the S7ProSim to S7-PLCSIM.

 ConnectExt: Connects the S7ProSim to the S7-PLCSIM instance with number

InstanceNumber.

 Disconnect: Disconnects the S7ProSim form S7-PLCSIM.

 GetScanMode: Reports the operating mode of S7-PLCSIM.

 ReadDataBlockValue: Reads a particular bit, byte, word, or double word from the

DB memory area of S7-PLCSIM.

 ReadOutputImage: Reads elements from the peripheral outputs (PQ memory area) of

S7-PLCSIM.

 WriteDataBlockValue: Writes a particular bit, byte, word, or double word to the DB

memory area of S7-PLCSIM.

23

 WriteInputImage: Writes elements to the peripheral inputs (PI memory area) of S7-

PLCSIM, starting at the StartIndex of the data to which pData points.

2.6.2 OPC

OPC is a technical specification that defines a set of standard industrial software

interfaces based upon Microsoft’s OLE/COM technology [20]. The acronym OPC is

derived from OLE (Object Linking and Embedding) for Process Control.

[OPCFoundation.org].

Before the development of the OPC standard, industrial software applications that access

the process data were restricted to the access techniques of the communication network

of one manufacturer. For a particular hardware device, each software application must

include a separate driver. This posed some problems in terms of having devices from

different vendors for one particular application. The customer was bound to use all the

required components of the control system from the same vendor. The standardized OPC

interface now allows the user to have uniform access to communication networks of any

vendor via the OPC interface. [21]

There are several specifications released by the OPC foundation for enabling data

communication on the basis of a client-server architecture. The interface which allows

the exchange of events and data between application, OPC server, OPC client and the

device are defined by the OPC specification. The most common specifications are

described below in brief [22]:

 OPC Data Access specification (OPC-DA): This was the first specification released

by the OPC foundation [22]. This enables communication of process data between

one or more data resources and clients [23]. The data resource can be located on the

same computer as the client or the data resource can be a sensor or control and

automation unit connected through a communication network.

 OPC Alarm and Event specification (OPC-AE): The OPC Alarm and Event

specification defines an interface for servers and client for transmission and

acknowledgement of the alarms and events in a structured manner [22]. Data from

different sources like for example, PLC, and sensors can be received by the AE

24

server. The OPC-DA server and OPC-AE server can access data from the same data

resource. The difference is that, OPC-DA provides continuous data stream and the

OPC-AE server’s data stream is triggered by the change in the event like for example,

temperature crossing a certain threshold etc. [20]

 OPC Historical Data Access Specification (OPC-HDA): The OPC-HDA server

provides the client, access to the historical data. The historical data can be presented

in a simple row data manner or in the form of aggregated data which is the processed

data [22].

In this master thesis the OPC client- server software from Softing [reference needed] is

used. The OPC server fetches the data from the real S7-300 PLC connected via a TCP/IP

connection. The OPC client then accesses the data from the OPC server, which is later

communicated to the 3D simulated model.

2.6.3 Softing OPC Server Ethernet

The OPC server Ethernet from Softing enables the exchange of data between the field

device (PLC) from a wide range of manufacturers and OPC client via Ethernet TCP/IP.

The OPC client server interface provided by Softing is based on the OPC-DA

specification provided by the OPC foundation. An OPC server allows one or more OPC

clients to access process data via this interface.

The OPC-DA specification allows exchange of data between one or more OPC servers

and client in a continuous manner. In the OPC-DA specification three hierarchical classes

are defined: OPCServer, OPCGroup, and OPCItem. An object of class OPCServer

represents manufacturer specific OPC server. The variables used by OPC server are

structured in the object of class OPCGroup. With the OPCGroup the client is able to

create a list of useful variables. An OPCItem is the actual process variable accessed by

the client.

The NetCon OPC is the graphic interface for configuring and diagnosing the OPC server.

The GUI connects with the OPC server core via TCP/IP connection. The OPC server

from Softing has the name INAT TCPIPH1 OPC Server. Along with the OPC server, a

test OPC client is also installed. The OPC client determines the OPC servers already

25

installed and offers to connect to them on the start of the OPC client. After connecting to

the OPC server, a new OPCGroup can be created in the client. The process variables of

interest are added as OPCItem in the OPCGroup.

26

3 Methodology

This chapter focuses on the methodology adopted to integrate different types of external

PLCs into a graphical simulation environment and the virtual verification of the

simulated mechatronic model. Further this chapter provides a basic idea of the generic

controller object developed in this master thesis and the design of the communication

architecture between the controller object and the external PLC.

3.1 Steps for Virtual Verification of the PLC Program

Figure 3.1 shows the steps involved in the process of verifying the PLC programs in

conjunction with a simulation model.

27

Figure 3.1: Steps in virtual verification of PLC programs

In step (1) the design for the factory layout is developed. This step defines the placement

of various equipment, sensors and actuators, number of controllers required and the flow

of material from one station to the next in the production system. As the flow of material

from one station to the next in the production system is known, sequence of operations

to be carried out by the controllers at every station can now be defined in brief. After the

sequence of operations for each of the controllers is defined, the inputs and outputs of

the respective controller can be listed. This list of inputs and outputs is used in the later

stages of implementing the control programs.

28

In step (2) a 3D model of the production system is developed in accordance with the

layout from the previous step using a simulation software. Some simulation software

provide a library of basic industrial components such as conveyor belts, sensors, switches

etc. These components can be directly used in developing complex systems. In case of

absence of one or more components, CAD models of the missing components have to be

developed by using other appropriate software and then import these CAD models into

the 3D simulation environment.

Since PLCs are the more preferred choice of controllers in industries, the type of

controllers used in this master thesis are PLCs. The process of implementation of the of

the control programs which govern the behavior of the model can be done in parallel with

the development of simulation model since, the material flow in the plant, sensors and

actuators, and the list of inputs and outputs of the controllers in the simulation model are

known in advance. As shown in the figure 3.1, step (3) represents the development of the

PLC programs

After the PLC programs are implemented, they are downloaded to an external PLC.

Communication should be established between the simulation model and this external

PLC. This is shown as step (4) in the figure 3.1. The mode of communication between

the simulation model and the PLC depends on whether the external PLC is a hardware

or a simulated PLC, and on the possible means of communication offered by the PLC

and the simulation software.

PLC programs can be verified with the model after a successful communication is

established between the two (step (5) in the figure 3.1). The inputs from the sensors are

transmitted to the external PLC, which generates appropriate control signals depending

on the instructions stored by the user in the memory of the PLC. The outputs are

communicated back to the simulated model. The models behavior should expose any

errors in the control program, the model itself or both. Any errors in the simulated plant

can be corrected in the simulation and in case these errors are also present in the design

of the plant, the correction can be applied upstream to the design documents. The PLC

programs can be edited with minimal effort and downloaded to the simulated or hardware

PLC to correct any errors. Once the model and the PLC programs run error free, the

control programs are ready to be downloaded to the real PLCs for the actual

commissioning of the plant. If a simulated PLC was used for the simulation, an additional

29

simulation run with a hardware PLC might be included before commissioning to verify

the correctness of the program on real hardware.

3.2 Communication with the External PLC

Figure 3.2 illustrates the basic idea adopted to integrate the external PLC into a graphic

simulation environment. The simulation model consists of various objects like such as,

work-pieces, sensors, actuators, conveyor systems etc. Communication between the

simulation model and the external PLC is such that, the inputs from the sensors in the

simulation model are connected to the inputs of the external PLC and the outputs of the

PLC are connected to various actuators in the simulation model.

Figure 3.2: Integration of external PLC into a graphic simulation environment

For the simulation model to be able to exchange inputs and outputs with the external PLC

an appropriate communication interface is needed. Figure 3.3 shows the concept of such

an interface that facilitates the exchange of data between the simulated model and the

external PLC.

30

Figure 3.3: Exchange of data between simulation model and external PLC

The choice of the communication interface between the simulation model and the

external PLC depends on the software used for development of the simulation model as

well as on the type of the external PLC. The sensor data from the simulation model is

transmitted to inputs of the external PLC via the communication interface. The PLC

generates appropriate output signals to be sent to the actuators. These actuator signals are

communicated back to the simulation model via the communication interface.

Connecting every signal from the sensors in the simulation model to the inputs of the

external PLC and every output of the PLC to respective actuators in the simulation model

will make the process of integrating external PLC into simulation environment a very

complex procedure. To overcome this problem, a controller object is developed in the

simulation environment. The controller object acts as an internal PLC with inputs and

outputs. Figure 3.4 describes the role of this controller object in the process of integrating

external PLC into simulation environment. The simulation model consists of various

objects like such as, work-pieces, sensors, actuators, conveyor systems etc. The sensors

receive the necessary information from the simulation model and serves as inputs to the

controller object. The controller object’s function is to read the inputs and generate

appropriate output signals. The outputs of the controller object are connected to the

actuators. The controller object in the simulation model is not capable of processing the

input signals, interpreting the instructions and generating the output signals. It merely

serves as an interface to an external PLC which contains the user program necessary to

control the behavior of the simulation model.

31

Figure 3.4: Role of controller object in the graphic simulation environment.

Communication between controller object in the simulation environment and the external

PLC is established such that, the inputs of the controller object in the simulation

environment are mapped to the inputs of the external PLC. The external PLC generates

the output signals according to the user programs stored in its memory. The outputs are

then mapped to the controller object in the simulation environment. This communication

between the controller object and the external PLC can be established using various

communication protocols such as COM and OPC.

32

The PLC programs required for controlling the mechatronic behavior of the machine in

the simulated plant model are developed using a PLC program development software.

Later these programs are downloaded to the memory of the external PLC.

As the main objective of this thesis is to develop a generic PLC integration concept, the

controller object in the simulation environment should be able to communicate with

different types of external PLCs. Figure 3.5 illustrates the concept of the generic

controller object in the simulation environment. It includes inputs and outputs that

connect to the sensors and actuators. The controller object can be configured to

communicate with different type of external PLCs, however to avoid conflicts, only

connection to one of the external PLCs be active at a given time.

Figure 3.5: Concept of a generic controller object

The connection between the controller object in the simulation environment and external

PLC is as illustrated in the figure 3.4. The inputs and outputs of the controller object are

mapped to the inputs and outputs of the PLC having an active connection to the controller

object.

33

To realize connections to more than one type of external PLC, the controller object in the

simulation environment is developed as shown in the figure 3.6.

Figure 3.6: Overview of the generic controller object

To facilitate connection to more than one external PLC using a single controller object

in the simulation environment, the concept of ‘connectors’ is introduced. Connectors are

objects with inputs and outputs which communicate with the external PLCs. Connectors

exchange inputs and outputs with the external PLC via a communication interface.

As sensors and actuators in the simulation model are connected to the generic controller

object and the external PLC exchanges the input-output data with the connector, some

kind of communication should exist between the generic controller object and connector

so that the simulation model behaves in accordance with the control program running on

the external PLC.

‘IO maps’ in the controllers as shown in the figure 3.6, perform the function of mapping

inputs and outputs of the generic controller object and the connector. Each of the

connector creates IO maps which map their respective inputs and outputs to the inputs

and outputs of the controller object. In order to avoid the conflict, only the IO maps of

the active connector are made effective during the simulation.

34

To demonstrate the ability of the controller object to connect to more than one external

PLC, integration with two different types of PLCs is prototypically developed. This is

illustrated in the figure 3.7.

Figure 3.7: Prototype implementation of the generic controller object

Connection to external simulated PLC S7-PLCSIM and hardware PLC S7-300 is

implemented in this thesis. Since the controller object is developed in a generic manner

connection to any other type of PLC can be easily integrated.

35

4 Implementation

This chapter describes the implementation of the proposed PLC integration within a

graphic simulation environment. The internal controller object as described in the

previous chapter is developed in the VEROSIM environment. The controller object is

capable of communicating with external PLCs. The controller object in the simulation

environment is called ‘PLCNode’. The PLCNode will be capable of communicating with

different types of external PLCs. Currently communication interfaces with two types are

implemented: simulated PLC S7-PLCSIM and hardware PLC S7-300. Figure 4.1 gives

an overview of the implementation of the PLCNode.

The PLCNode has several inputs and outputs which corresponds to the inputs and outputs

of the connected PLC. These inputs and outputs of the PLCNode are connected to the

sensors and actuators in the VEROSIM model. Connectors configured in this PLCNode

communicate with the external PLCs. As communication with two types of PLCs is

implemented in this master thesis, two types of connectors can be configured in the

PLCNode. From the figure 4.1, one of the connectors is of type ConnectorPLCSim,

which communicates with the external simulated PLC Siemens S7-PLCSIM. The other

connector is of the type ConnectorOPC, which communicates with the external hardware

PLC SIMATIC S7-300 from Siemens.

36

Figure 4.1: Integration of external PLCs into VEROSIM

To have a better understanding of the implementation of PLCNode it is necessary to get

acquainted with some basic concepts necessary for development of new interfaces in the

VEROSIM environment. Concepts in VEROSIM such as plugin, extension, reference

etc. are discussed further.

VEROSIM framework is based on the concept of scene graph and the core database is

organized as a directed acyclic graph. Addition of arbitrary data to this graph is based on

methods in object oriented modeling. [24]

37

All simulation functionalities of the framework are achieved by creating specialized

plugins which interact with the VSD core. Various simulation and data processing

algorithms, interfaces to hardware and software systems, user interfaces etc. are

implemented as plugins. Using the VSD, the plugins can communicate with the database,

as well as establish directed communication between themselves. [24]

Specializations of already existing classes of ‘nodes’ are created through inheritance.

‘Nodes’ can have properties, and modeling of aspects of real world objects is easily

carried out by storing arbitrary information in properties. [24]

The concept of ‘extension’ is introduced to cover relations other that exist between

objects. “An extension can be interpreted as an active property added to a node in order

to extend its capabilities”. As additional degree of specialization is added to the existing

object, extensions can be thought as similar to the concept of inheritance. But, in contrast

to the static nature of inheritance, the extensions are dynamic allowing the specialization

of the nodes to be created in runtime. Special attributes can be added to the node or

removed from the node according to the situation with the help of extensions. [24]

In the VEROSIM database properties are allowed to hold ‘reference’ to other nodes

within the database. This allows to model more complex relationships (for example, for

closed loop kinematics) breaking with the acyclic nature of the basic scene graph [24].

Similar to other functionalities in VEROSIM, the PLC object is developed as a plugin

interacts with the VSD core. The implementation of the PLCNode and communication

to external simulated and hardware PLC is done in three distinct plugins namely

VSPluginPLCSim, VSPluginOPCClient and VSPluginPLCConnection.

 VSPluginPLCConnection: The plugin VSPluginPLCConnection provides the

PLCNode, which acts as an internal controller object with inputs and outputs. The

creation of different connectors managed by the plugin VSPluginPLCConnection.

When more than one connectors are configured in the PLCNode, the plugin enables

communication with only one of the configured connectors at a given time depending

on the connector in the property currentConnector.

 VSPluginPLCSim: The plugin VSPluginPLCSim creates a PLCSim Extension which

is used by the ConnectorPLCSim. It is responsible for establishing the

38

communication between the PLCNode in the simulation environment and the

external simulated PLC. The communication is done via the COM object S7ProSim.

 VSPluginOPCClient: The plugin VSPluginOPCClient creates an OPCClient node

which is used by the PLCNode’s ConnectorOPC. It is responsible for establishing

the communication between the PLCNode in the simulation environment and the

external hardware PLC. The communication with the hardware PLC is established

with the help of the software OPC Server Ethernet from Softing. The data transfer

between the OPC server and the external hardware PLC is done via a TCP/IP

connection.

4.1 Plugin VSPluginPLCConnection

The plugin VSPluginPLCConnection is the master plugin, which manages the creation

and configuration of various connectors to connect to the external PLCs. The plugin is

developed from the basic idea as represented in the figure 3.6.

 Figure 4.2 describes the detailed implementation of the plugin

VSPluginPLCConnection. The plugin contains various classes like, PLCNode,

Connector, and IOMapping. All the three classes PLCNode, Connector and IOMapping

are derived from the base class VSD::Node.

39

Figure 4.2: The plugin VSPluginPLCConnection

The Class PLCNode creates a PLCNode object in the VEROSIM environment. The

PLCNode can be added into the VEROSIM project from the internal model library which

contains a diversity of preconfigured components. The PLCNode contains an IO board,

to which inputs and outputs can be added. The inputs and outputs are then connected by

the user to the sensors and the actuators in the VEROSIM model. The property widget

of the PLCNode contains a drop down menu with the list of all available connectors.

Selecting the desired connector and clicking the button ‘Add’ creates a connector of that

type. PLCNode has a property list ‘connectors’ which hold the list of connectors created

by the user. Figure 4.3 (a) shows the property widget of the PLCNode and figure 4.3 (b)

shows the PLCNode with two connectors added. More than one connector can be

configured in the PLCNode. However, at any given time only one of the connectors can

be used to connect to the external PLC. The property ‘currentConnector’ holds the

connector which is used to connect to the external PLC at a given time. The

‘currentConnector’ can be changed by selecting the desired connector from the list of

available connectors and dragging and dropping it on to the property ‘currentConnector’.

40

Figure 4.3: Creating connectors in a PLCNode

The class Connector is the base class from which different type of connector classes are

derived. Two classes are derived from the Connector class. The class ConnectorPLCSim

represents a connector of type ConnectorPLCSim with an extension “ExtensionPLCSim”

to connect to the external simulated PLC S7-PLCSIM. An IO board in the

ConnectorPLCSim with inputs and outputs enables the exchange of data between the

ConnectorPLCSim and the simulated PLC S7-PLCSim. The number and type of inputs

41

and outputs on the ConnectorPLCSim’s IO board should be equal to that in the PLC

program downloaded onto the S7-PLCSim in order to establish a successful connection

between the two. In addition to the number and type of inputs and outputs, the order of

the inputs and outputs organized in the PLCNode’s IO board should match the order of

the inputs and outputs defined in the S7-PLCSim program. In case if the inputs and

outputs are not organized in the same order, the mapping of inputs and outputs will be

inconsistent and the simulation model might not function as intended.

The class ConnectorOPC is also derived from the base class Connector. It represents an

OPC connector with an OPCClient node which connects to the external hardware PLC

via an OPC server. An IO board in the OPCClient node enables the exchange of data

between ConnectorOPC and the OPC Server. The OPC Server is connected to the

hardware PLC S7-300 via a TCP/IP connection. The process data from the OPC server

is made available by means of OPCItem objects. All the inputs and outputs of OPCClient

node include an extension OPCItem, as each process variable (input/output) on an OPC

client is of type OPCItem. Each of the inputs and outputs is mapped to one of the

OPCItems offered by the OPC server, via a drop down menu in the property widget. A

group of OPCItems accessed by the OPC client are organized into an OPCGroup. The

IO board of the OPCClient node has an extension “OPCGroup” which groups all the

OPCItems accessed by the OPCClient node.

The PLCNode and the connectors, ConnectorPLCSim and ConnectorOPC, each have

distinct IO boards. The PLCNode IO board connects to the sensors and actuators in the

VEROSIM model while the IO boards in the Connectors ConnectorPLCSim and

ConnectorOPC, enables the exchange of data between the connectors and the external

simulated and hardware PLC respectively. For the simulation model to work with the

external PLCs a mapping of inputs and outputs of the PLCNode IO board to the inputs

and outputs of the IO board of the connectors is required.

The Class IOMapping is responsible for the mapping of the inputs and outputs of the

PLCNode to the inputs and outputs of the configured connectors. Two separate classes

IOMappingInput and IOMappingOutput are derived from the class IOMapping to map

the inputs and outputs respectively. The class IOMapping is derived from the VEROSIM

base class VSS::TaskStep that executes the IOMapping function every simulation cycle.

42

Thus the mapping of inputs and outputs of the PLCNode and the connector is done every

simulation cycle.

The class IOMappingInput, derived from the base class IOMapping, maps the

sourceInput to the targetInput. As seen from figure 4.4, the sourceInput is an input from

the PLCNode’s IO board and the targetInput is an input from the connector’s IO board.

The class IOMappingOutput, also derived from the base class IOMapping, maps the

sourceOutput to the targetOutput. The sourceOutput is an output from the connector’s

IO board and the targetOutput is an output from the PLCNode’s IO board.

Figure 4.4: Implementation of the class IOMapping

 IO maps created for each of the inputs and outputs are stored as a list in the property

‘nodesIOMapping’ of the connector object. Thus each connector configured will have a

list of IO mappings in the property ‘nodesIOMapping’. After adding the inputs and

outputs to the IO boards of PLCNode and the connector, IO maps can be created by

clicking on the button ‘Create IO mappings’ as shown in the figure 4.5. Since more than

one connector can be configured by the user, not all the connector’s IO maps should be

active at the same time. To solve this problem, each of the connectors checks for property

‘currentConnector’ of its parent PLCNode. The IO maps of the connector are made active

only if the connector is selected to be the ‘currentConnector’, else the IO maps of the

connector are inactive.

43

Figure 4.5: Creating IO maps

In case of the ConnectorPLCSim, the exchange of data between ConnectorPLCSim and

the simulated PLC S7-300 is dependent on the order of the inputs and outputs. This

dependency is used when automatically creating the IO maps between the

ConnectorPLCSim and PLCNode. Provided the number of inputs and outputs in the two

IO boards of the ConnectorPLCSim and PLCNode are equal, clicking the ‘Create IO

Mappings’ button on the property widget of the ConnectorPLCSim automatically creates

the IO mappings for the inputs and the outputs.

As each of the inputs and outputs in the ConnectorOPC’s IO board are mapped to the

OPCItem provided by the OPC server by selecting the OPCItem, the IO mapping

between the ConnectorOPC and PLCNode is not done automatically. However for the

user’s convenience, IO maps (IOMappingInput and IOMappingOutput) are created

depending on the number of inputs and outputs in the PLCNode’s IO board on clicking

the button ‘Create IO Mappings’. In case of the IO maps for inputs, the IOMappingInput

44

objects are created with the sourceInputs automatically filled. The IO maps for outputs,

IOMappingOutput are created with the targetOutputs automatically filled. Adding the

targetInputs and the sourceOutputs has to be done manually by the user.

4.2 Plugin VSPluginPLCSim

The plugin VSPluginPLCSim creates the connection to the external simulated PLC S7-

PLCSIM via the COM object S7ProSim. By adding a reference to the S7ProSim COM

object, the methods provided by this object can be used to get programmatic access to

the S7-PLCSIM. The communication sequence between the VSPluginPLCSim and S7-

PLCSIM via the S7ProSim COM object is shown in figure 4.6.

Figure 4.6: Communication with S7-PLCSIM

 The method ‘Connect’ connects S7ProSim COM object to the first instance of S7-

PLCSIM which has the instance number 1.

 The method ‘BeginScanNotify’ registers S7ProSim for callbacks from the controller.

 The input values from the connector object in the VEROSIM environment are copied

to a local variable.

45

 The method ‘WriteInputImage’ writes PLCSim connector’s input values to the

peripheral inputs of the S7-PLCSIM.

 The method ‘ReadOutputImage’ is used to read the elements from the peripheral

outputs of S7-PLCSIM.

 These output values are written back to the outputs of the PLCSim connector in the

VEROSIM environment.

 The method ‘EndScanNotify’ unregisters S7Prosim for the call backs from the

controller. The events ScanFinished and PLCSimStateChanged are no longer sent.

4.3 Plugin VSPluginOPCClient

The plugin VSPluginOPCClient is able to create an OPCClient object and connect to the

OPC server. The OPC server fetches the data from the external hardware PLC S7-300

via a TCP/IP connection. Figure 4.7 shows the configuration and working of the plugin

VSPluginOPCClient.

46

Figure 4.7: Communication with S7-300 via OPC client-server

The communication of the OPC Client object in the ConnectorOPC with the external

hardware PLC S7-300 is done in two steps: configuration and simulation.

In the configuration step, the OPCClient object is connected with the available OPC

server i.e. INAT TCPIPH1 OPC Server from Softing. After connecting to the OPC server,

an OPCGroup is created in the OPCClient node. The OPCGroup holds the list of

variables accessed from the OPC server. OPCItems accessed by the OCClient are then

added into the OPCGroup.

The simulation step includes the process of data exchange between the OPC client and

server. The input values at the OPCClient nodes IO board are read and if there is any

47

change in the input variables they are written to the OPC server. This process is repeated

cyclically. The communication of data from the OPC server to the VEROSIM model is

asynchronous in nature. The outputs from the OPC server are asynchronously read by

the outputs of the VEROSIM OPCClient node.

48

5 Validation

The operation of the controller object created in the VEROSIM environment is validated

with the help of a mechatronic model. This chapter describes the development of the

simulation model in VEROSIM and the PLC program which controls the behavior of the

model. Further, the process of creating the PLC object in the VEROSIM environment,

and configuring different connectors to connect to the external simulated and hardware

PLC is illustrated.

5.1 Simulation Model

Figure 5.1 shows the simulation model developed in VEROSIM. This is a mechatronic

model where the work-piece is placed on a work-piece carrier and moved between two

stations, station 1 and station 2 by a conveyor belt arrangement. At station 1 a robot arm

grips the work-piece and rotates it by 180 degrees. At station 2 the work-piece waits for

3 seconds.

The CAD data for the simulation model is imported into the VEROSIM environment and

mechanisms for the conveyor belts, work-piece and the robot arm are added. The

‘Start/Stop’ button turns on the conveyor belts. Two light barrier sensors are used to

detect the arrival of the work-piece carrier at the two stations. Four positions for the robot

arm are defined in order to perform the rotation action. The four robot arm positions

include two translation positions namely T_Pose0 and T_Pose1 and, two rotational

positions namely R_Pose0 and R_Pose1. A ‘simple robot controller’ from the VEROSIM

model library moves the robot arm from one position to the other. The movement

sequence of the robot arm is controlled by the PLC program. Each position of the robot

arm has an input, when triggered the simple robot controller moves the robot arm to that

position. As the robot arm reaches the desired position, an output signal ‘reached’ is

generated. Thus for all the four robot positions the input signals are set by the PLC and

the output signals are sent to the PLC as an acknowledgement. The waiting time for the

work-piece at station 2 is monitored by a timer in the PLC program.

49

Figure 5.1: VEROSIM model

Working of the 3D model:

1 Pressing the ‘Start/Stop’ button on the model, starts the conveyor belts.

2 When the object reaches the station 1 the conveyor belts are stopped and the robot

at station 1 grips the work-piece and rotates it by 180 degrees and places it back on

the work-piece carrier.

3 The conveyor belts are then started.

4 When the work-piece carrier reaches the station 2, the conveyor belts are stopped for

3 seconds and started again.

5 Back to step 2 or pressing the ‘Start/Stop’ button stops the operation of the model.

50

The operation of the model is controlled by PLC programs. The inputs from the model

are connected to the inputs of the PLC. The PLC generates appropriate output signals

depending on the user program stored in the PLC memory. The outputs of the PLC are

connected to the actuators in the VEROSIM model. Thus, before writing the PLC

programs for the model, a list of inputs and outputs used by the PLC has to be defined.

Output Description

Start_Conveyor Start the conveyor belts

T_Pose0_input Input signal for T_Pose0

T_Pose1_input Input signal for T_Pose1

R_Pose0_input Input signal for R_Pose0

R_Pose1_input Input signal for R_Pose1

Grip Grip the work-piece

Release_Gripper Release the gripper

Table 5.1: List of inputs from the VEROSIM model

Input Description

Start Signal generated on pressing the Start/Stop

button

Station1_reached Work-piece carrier reached station 1

Station2_reached Work-piece carrier reached station 2

T_Pose0_reached Robot arm reached the position T_Pose0

T_Pose1_reached Robot arm reached the position T_Pose1

R_Pose0_reached Robot arm reached the position R_Pose0

R_Pose1_reached Robot arm reached the position R_Pose1

ObjectGripped Object gripped by the robot

Table 5.2: List of outputs from the VEROSIM model

51

5.2 PLC Programming

The SIMATIC Step 7 software from Siemens is used for writing the PLC programs. A

sequential control system is developed using the S7-Graph package of the STEP 7

software. The list of inputs and outputs created for the controller object in the simulation

model serves as inputs and outputs for the external PLC as well.

The working of the simulation model is described by a S7-Graph in the form of a

sequencer. A sequencer represents a sequence of single steps and conditions that control

how the process moves on to the next step. Before creating the program for the sequencer,

the structure of the sequencer is specified by breaking down the working of the model

into single steps as shown in figure 5.2. The structure of the sequencer is specified by the

following the steps:

1 The working of the simulation model is broken down into steps and the order of the

steps is specified.

2 For each step, the actions that must be performed in that step are specified.

3 Then for every step, the conditions are decided that must be met so that the process

can move on to the next step.

52

Figure 5.2: Structure of sequencer for the PLC program to control the model

Once the structure of the sequencer is developed, a new project is created in SIMATIC

manager. In the new project hardware configuration for the PLC is done to be able to

download the programs developed to the PLCs.

Since a rack type PLC is used, the hardware configuration begins with adding a rack. In

the first slot a power supply module is added. A CPU is added in the second slot,

following the CPU input and output modules are added. Lastly, a communication module

is added for downloading the programs to the PLCs.

For the simulated PLC, hardware configuration is not a critical part of the project. The

configuration of the project for simulated PLC includes a standard rack, CPU315-2

PN/DP(1) and a digital input/output module (DI8/DO8xDC24V/0.5A). No

communication model is added in the hardware configuration for PLCSIM.

Downloading the programs to the simulated PLC S7-PLCSIM is via MPI connection.

Figure 5.3 shows the hardware configuration for using S7-PLCSIM.

53

Figure 5.3: Hardware configuration for S7-PLCSIM

In case of the hardware PLC, the hardware configuration is a crucial part of the project.

The types of hardware components added in the hardware configuration should exactly

be same as the actual hardware. The hardware configuration of the project for the real

PLC is as follows: standard rack, power supply (order number), CPU – 314-2 PN/DP (),

input/output module (order number) and a communication module cp-343 advanced.

Figure 5.4 shows the hardware configuration for the PLC S7-300.

54

Figure 5.4: Hardware configuration for PLC S7-300

While programming in STEP 7, the I/O signals, memory bits, counters, timers, data

blocks and function blocks can all be accessed by means of absolute addressing. However

it is easier to read and write the program if symbols are used instead of absolute

addressing. Using the ‘Symbol table’ name, absolute address, data type and comment

can be added for every address used. All the inputs and outputs listed earlier are defined

in the symbol table as shown in figure 5.5.

55

Figure 5.5: Symbol table

A S7-Graph function block (FB) is created in ‘Blocks’ folder in the SIMATIC manager.

In this FB the program for the sequencer is entered according to the sequencer design as

shown in figure 5.2. The sequential control program for the simulation model is called

and started in organization block ‘OB1’. The OB1 is created in the ladder logic (LAD)

language. All the blocks in the ‘Blocks’ folder are downloaded to the PLC. Figure 5.6

shows the project created in SIMATIC Manager. The sequencer is implemented in the

function block FB5 and it is called from the organization block OB1.

Inputs

Outputs

56

Figure 5.6: Project in SIMATIC Manager

5.3 Creating the Controller Object in VEROSIM Project

As the simulation model and the PLC programs are both implemented, the next task is to

integrate the external PLC containing the control program with the simulation model.

The controller object developed in VEROSIM helps in establishing the communication

with the external PLC. The controller object named ‘PLCNode’ is added to the

VEROSIM project from the VEROSIM model library. As 8 input and output signals are

defined for the simulation model, 8 digital inputs and outputs are added to the IO board

of PLCNode.

The VEROSIM IO editor is used to make the connections to the PLCNode from the

sensors and actuators in the simulation model. Referring to the lists of inputs and outputs

created in chapter 5.1, inputs and outputs from the simulation model are connected to the

corresponding inputs and outputs of the PLCNode.

Function block
containing the
program

Organization
block which
calls FB5

57

Connectors to connect to different types of external PLC are created in the PLCNode by

selecting the type of connector and clicking the ‘Add’ button from the property widget

of the PLCNode. A ConnectorPLCSim is created to connect to the S7-PLCSIM and a

ConnectorOPC is created to connect to the PLC S7-300.

Configuring the ConnectorPLCSim:

The ConnectorPLCSim is created with an ‘ExtensionPLCSim’ which facilitates the

communication with the external simulated PLC S7-PLCSIM. The ConnectorPLCSim

requires an IO board with inputs and outputs for the communication. The

ConnectorPLCSim is configured in the following manner:

 An IO board is added in the extensions of the ConnectorPLCSim.

 Similar to the PLCNode’s IO board 8 digital inputs and outputs are added to the

ConnectorPLCSim’s IO board.

 Clicking the ‘Create IO Mappings’ button on the ConnectorPLCSim’s property

widget creates a list of IOMappingInput and IOMappingOutput for inputs and

outputs in the property nodesIOMapping. As the source and the target inputs and

outputs are added automatically, the index of the inputs and outputs at the PLCNode

IO board should be similar to the index of the inputs and outputs at the

ConnectorPLCSim IO board.

Figure 5.7 shows the configured ConnectorPLCSim. The IO board of PLCNode consists

of 8 digital inputs and 8 digital outputs, thus 8 IOMappingInput and 8 IOMappingOutput

are created in the property ‘nodesIOMapping’. The sourceInput refers to the input on the

PLCNode IO board and the targetInput refers to the input on the ConnectorPLCSim IO

board.

58

Figure 5.7: Configured ConnectorPLCSim

59

Configuring the ConnectorOPC:

An OPCClient object is created in the ConnectorOPC For communication with the

external hardware PLC S7-300, the ConnectorOPC requires an IO board with inputs and

outputs for the communication. The ConnectorOPC is configured in the following

manner:

 An IO board with an extension OPCGroup is added in the OPCClient object of the

ConnectorOPC.

 The OPCItems of interest are added into the OPCGroup as inputs and outputs. The

OPCItems includes the inputs and outputs from the IO list created in chapter 5.1 and

any other additional process variable if required.

 Clicking the ‘Map IOs’ button from the ConnectorOPC’s property widget creates the

IO maps. The number of IOMappingInput and IOMappingOutput created

corresponds to the number of inputs and outputs in the PLCNode IO board. In case

of ConnectorOPC the created IO maps are not complete. The inputs of the PLCNode

IO board are added as the sourceInput in the IOMappingInput, and the outputs of the

PLCNode IO board are added as the targetOutput in the IOMappingOutput

automatically.

 The targetInputs in the IOMappingInput are added to map the inputs of the PLCNode

to the inputs of the OPCClient IO board.

 The sourceOutput in the IOMappingOutput are added to map the outputs of the

OPCClient to the outputs of the PLCNode IO board.

Figure 5.8 shows the configured ConnectorOPC. The IO board of PLCNode consists of

8 digital inputs and 8 digital outputs, thus 8 IOMappingInput and 8 IOMappingOutput

are created in the property ‘nodesIOMapping’. The sourceInput refers to the input on the

PLCNode IO board and the targetInput refers to the input on the ConnectorPLCSim IO

board. The sourceInput is added automatically and the targerInput is configured by the

user.

60

Figure 5.8: Configured ConnectorOPC

61

After both the connectors are configured to connect to external PLCs, the working of the

model is tested with the PLC program on the external PLCs. At first the simulated PLC

S7-PLCSIM is chosen as the external PLC to control the behavior of the simulation

model. To connect the simulation model with S7-PLCSIM, the ConnectorPLCSim is

selected as the CurrentConnector. Starting the simulation, the S7-PLCSIM is set to ‘Run’

mode, and the exchange of data between the PLCNode and S7-PLCSIM begins. When

the simulation is started, the input signals are sent to the Simulated PLC and the program

on the simulated PLC sends appropriate output signals. This communication of input and

output signals continue as long as the simulation is running. The model is seen to behave

as mentioned earlier in this chapter. The simultaneous change in input and output signals

can be monitored in the S7-PLCSIM simulation window as well as in the PLCNode and

ConnectorPLCSim IO board in VEROSIM IO editor.

The PLCNode’s operation is validated by selecting the connection to simulated PLC and

hardware PLC one at a time. Before starting the simulation, the user must ensure the

following points are taken care of:

1 The number and order of inputs and outputs in the PLCNode matches the number

and order of inputs and outputs defined in the PLC programs for simulated PLC S7-

PLCSIM.

2 Inputs and outputs of the OPCClient IO board are mapped to the OPCItems served

by the OPC server.

3 The targetInput and sourceOutput in the IOMappingInput and IOMappingOutput for

the ConnectorOPC are assigned appropriately.

4 PLC programs are downloaded to the simulated and hardware PLC, and the

hardware PLC S7-300 is set to ‘run’ mode.

Validation of the connection to external hardware PLC is done by selecting the

ConnectorOPC as CurrentConnector. Starting the simulation connects the OPCClient in

the ConnectorOPC to the OPC server. As ConnectorOPC is selected as currentConnector

the IO maps of the ConnectorOPC are active i.e. the PLCNode IO board is mapped to

the OPCClient IO board in the ConnectorOPC. The input signals from PLCNode are sent

to the hardware PLC S7-300 via the OPCClient and OPC server. The program running

on the S7-300 generates appropriate output signals which are communicated back to the

PLCNode via OPC server and OPCClient object. On pressing the ‘Start’ button on the

62

screen the model begins the operation and it is seen that the model behaves in an expected

manner. A test OPC client installed along with the software ‘Softing OPC server

Ethernet’ can be used to configure the OPCItems of interest for monitoring. When the

inputs and outputs change the state at the PLCNode, the same change in the state can be

observed at the corresponding OPCItem in the test OPC Client.

For validation of the connection to external simulated PLC, the operation of the model

and the simulation is stopped. The currentConnector is now changed to

ConnectorPLCSim. Starting the simulation makes the IO maps for the

ConnectorPLCSim active, i.e. the PLCNode IO board is mapped to the

ConnectorPLCSim IO board. S7-PLCSIM is set to ‘run’ mode at the start of the

simulation. The input signals from the PLCNode are sent to the simulated PLC S7-

PLCSIM. The simulated PLC generates output signals by processing the inputs and the

instructions stored in the program memory of the PLC. On pressing the ‘Start/Stop’

button on the screen the model begins the operation and it is seen that the model behaves

in an expected manner on connecting to S7-PLCSIM as well. When the inputs and

outputs change the state at the PLCNode, the same change in the state can be observed

at the S7-PLCSIM simulation window as well.

63

6 Conclusion and Outlook

The modern day manufacturing industries involve highly automated production lines

with many complex and interacting systems. Commissioning of these complex systems

is a time consuming and expensive task. Virtual verification of production lines with the

help of simulation models prior to actual commissioning helps in reducing the delays and

additional costs due to errors during actual commissioning.

Including the behavior of control systems (PLCs) into a simulation environment helps in

generating more realistic models. These models help in the verification of the complex

system along with the PLC programs. As external PLCs can reproduce more accurate

behavior of the control system, a generic concept is developed in this master thesis to

integrate external PLCs into graphic simulation environment.

A concept of generic controller object in simulation environment is developed, which

allows integration of different type of external PLCs into the simulation environment.

The controller object has inputs and outputs to connect to the sensors and actuators in the

simulation environment.

To facilitate the connection to different types of external PLC, the concept of connectors

is introduced. Each of the connector has inputs and outputs which are mapped to the

inputs and outputs of the connected external PLC via a communication interface

respectively. On establishing the connection between the connector and the external

PLC, the inputs of the connector are written to the inputs of the external PLC. The PLC

generates appropriate output signal by processing the input signals and the instructions

stored in the PLC’s memory. The outputs of the connector are read from the output of

the external PLC via the communication interface.

The controller object connects to the sensors and actuators in the simulation environment

and the external PLC exchanges the inputs and outputs with the connector, an IO

mapping function is responsible for mapping the inputs and outputs of the controller

object to the inputs and outputs of the connector. This IO mapping function is executed

every simulation cycle of the simulation software. Thus the input and output variables

are updated every simulation cycle.

64

Connections to more than one external PLC can be established in a single controller

object by configuring multiple connectors. However, to avoid the conflicts, connection

to only one of the external PLCs can be active at a given time. All the configured

connectors are listed in the controller object and the user can select one of the connectors

to be active at a given time. The active connector maps its inputs and outputs to the inputs

and outputs of the controller object, thus connecting the sensors and actuators to the

external PLC.

The generic PLC integration concept is implemented using VEROSIM as simulation

system. A generic controller object is developed in the VEROSIM environment which is

capable of integrating different external PLCs.

As a prototype implementation connections to external simulated PLC S7-PLCSIM and

hardware PLC S7-300 are implemented. This demonstrates the ability of the controller

object to create connections to more than one external PLC. Two types of connectors can

be created in the controller object to connect to the simulated and hardware PLC. The

connection to the simulated PLC is via a COM object and the connection to the hardware

PLC is via an OPC client-server configuration. A third party OPC software is used to

configure the OPC server.

The controller object’s operation is validated with the help of a mechatronic model in

VEROSIM. Sensor and actuator signals from the simulation model are connected to the

inputs and outputs of the controller object. The control programs necessary to govern the

behavior of the mechatronic model are developed using a PLC program development

tool and downloaded to the external simulated and real PLC.

Two connectors are configured in the controller object to integrate the external simulated

and real PLC into the simulation environment. IO maps are created to map the inputs and

outputs of each of the connector to the controller object. Behavior of the simulation

model is observed by selecting one of the configured connectors as active at a given time.

Running the simulation in real-time the behavior of the model is observed. Selecting the

connector to the simulated PLC as active connector, the model is seen to behave in an

expected manner. The switching the active connector which connects to the hardware

PLC, the model was seen to behave in the exact same manner. This demonstrates the

functioning of the generic controller object in the simulation environment.

65

As a future development a connection to the hardware PLC can be implemented using

libraries such as ‘libnodave’. This eliminates the requirement of additional OPC client-

server software. Another improvement can be implementation of the IO mapping

function using the signal-slot mechanism. In this thesis the IO mapping function is

implemented such that it is executed every simulation cycle of the simulation software.

Thus the input and output variables are updated every simulation cycle. Mapping the

inputs and outputs every simulation cycle becomes redundant if the input and output

variables are not changing at a greater speed. This redundancy can be overcome by

implementing the IO mapping function using the signal-slot mechanism. Every change

in the input or output variable generates a signal. This signal is connected to a slot which

implements the IO mapping function. The concept of generic PLC integration presented

in this thesis can be implemented using different graphic simulation system.

66

References

[1] B. K. Choi and B. H. Kim, “New Trends in CIM,” in Current Advances in

Mechanical Design, pp. 425–436, 2000.

[2] S. C. Park, C. M. Park, and G.-N. Wang, “A PLC programming environment based

on a virtual plant,” The International Journal of Advanced Manufacturing

Technology, vol. 39, no. 11-12, pp. 1262–1270, 2008.

[3] G. Reinhart and G. Wünsch, “Economic application of virtual commissioning to

mechatronic production systems,” Production Engineering, vol. 1, no. 4, pp. 371–

379, 2007.

[4] S. Makris, G. Michalos, and G. Chryssolouris, “Virtual Commissioning of an

Assembly Cell with Cooperating Robots,” Advances in Decision Sciences, vol.

2012, no. 1, pp. 1–11, 2012.

[5] J. Dzinic and C. Yao, Simulation-based verification of PLC programs: Department

of Signals and Systems, Chalmers University of Technology, ISSN: 99-2747920-

4, 2014.

[6] Z. Liu, C. Diedrich, and N. Suchold, Virtual Commissioning of Automated Systems:

INTECH Open Access Publisher, 2012.

[7] VDI-Richtlinie 4499, Digitale Fabrik Grundlagen, Blatt 1, Duesseldorf, 2007.

[8] O. Salamon and A. Heidari, Virtual commissioning of an existing manufacturing

cell at Volvo Car Corporation using DELMIA V6, no: EX023/2012: Department

of Signals and Systems, Chalmers University of Technology, 2012.

[9] F. Auinger, M. Vorderwinkler, and G. Buchtela, “Interface driven domain-

independent modeling architecture for “soft-commissioning” and “reality in the

loop”,” in Farrington, Nembhard et al. (Ed.) – the 31st winter simulation

conference, pp. 798–805, 1999.

[10] MATLAB. Available: http://www.mathworks.com/products/simulink/ (2015, Aug.

02).

67

[11] P. A. Fritzson, Principles of object-oriented modeling and simulation with

Modelica 2.1. Piscataway, N.J, [New York]: IEEE Press; Wiley-Interscience,

2004.

[12] Cosmol, http://www.comsol.com/ (Accessed on: 2015, Aug. 10).

[13] J. Rossmann, M. Schluse, C. Schlette, R. Waspe, “A New Approach to 3D

Simulation Technology as Enabling Technology for eROBOTICS,” in 1st

International Simulation Tools Conference & EXPO 2013, SIMEX’2013 (Van

Impe, Logist, eds.),, pp. 39-46,2013.

[14] http://wiki.ros.org/gazebo, Gazebo (Accessed on: 2015, Aug. 05).

[15] W. Bolton, Programmable logic controllers, 5th ed. Amsterdam, Boston: Newnes,

2009.

[16] Simmechanics from Mathworks,

http://www.mathworks.com/products/simmechanics/ (Accessed on: 2015, Aug.

01).

[17] K.-H. John and M. Tiegelkamp, IEC 61131-3: Programming industrial automation

systems: Concepts and programming languages, requirements for programming

systems, decision-making aids, 2nd ed. Berlin, New York: Springer, 2010.

[18] S7-PLCSIM Manual. Available:

https://cache.industry.siemens.com/dl/files/828/54667828/att_110511/v1/s7wsvh

db_en-US.pdf (date of access: 2015, Aug. 02).

[19] STEP-7 Manual. Available:

https://support.industry.siemens.com/cs/document/45531107/simatic-

programming-with-step-7-v55?dti=0&lc=en-WW (date of access: 2015, Aug.

02).

[20] Li Zheng and H. Nakagawa, “OPC (OLE for process control) specification and its

developments,” in SICE 2002. of the 41st 5-7, pp. 917–920, 2002.

[21] M. R. Anwar, O. Anwar, S. F. Shamim, and A. A. Zahid, “Human Machine

Interface Using OPC (OLE for Process Control),” in Student Conference On

Engineering, Sciences and Technology, pp. 35–40, 2004.

[22] M. H. Schwarz and J. Boercsoek, “Advances of OPC Client Server Architectures

for Maintenance Strategies‐a Research and Development Area not only for

68

Industries,” WSEAS Transactions on Systems and Control, vol. 3, no. 3, pp. 195–

207, 2008.

[23] M. H. Schwarz and J. Boercsoek, “A survey on OLE for process control (OPC),”

in World Scientific and Engineering Academy and Society (WSEAS) – Proceedings

of the 7th Conference, pp. 186–191, 2007.

[24] Roßmann, J, Eilers, K, Schlette, C, Schluse, M, “A Uniform Framework to

Program, Animate and Control Objects, Kinematics and Articulated Mechanisms

in a Comprehensive Simulation System,” in Proceedings of the Joint 41th

International

