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1 Introduction 

The frequent introduction of new and advanced products and product variants in the 

market significantly shortens the lifecycle of existing products. As the product lifecycles 

are reduced in the continuously changing marketplace, modern manufacturing systems 

should have sufficient responsiveness to adapt their behaviors efficiently to a wide range 

of circumstances. In order to remain competitive in today’s  market, the manufacturer 

should focus on improving the production system continuously alongside the 

improvements in the product itself [1]. The present day manufacturing systems need to 

be fast and flexible in terms of production, ramp up time and cost effectiveness.  

Automation of the manufacturing process increases the product quality and quantity in 

comparison with the manual operations. Modern production lines are highly integrated 

systems, consisting of automated work stations such as robots with tool changing 

capabilities, a storage and hardware handling system, and a computer control system that 

controls the operation of the entire production line [2].  Involving many complex and 

interacting systems, commissioning of the production lines is an expensive and time 

consuming task. Decisions regarding the flow of material and placement of necessary 

equipment should be made very carefully during the design phase. A poor design can 

lead to large volume of inventory, inefficiency and inflexibility. Changing the layout in 

the later stages after the installation of all the machinery can be expensive. Thus it is 

necessary to get the design right to achieve the intended benefits.  

Simulation helps to analyze complex manufacturing systems from the design and 

ongoing operation prospective. Technological developments and increasingly efficient 

computing platforms have significantly enhanced the process of modeling, simulation 

and analysis. This has enabled digital processing of complex tasks in manufacturing 

processes with the aid of high-fidelity models of the manufacturing system and the 

surrounding environment. The use of simulation models in the design and planning of 

manufacturing systems help to identify bottlenecks and detect the errors in scheduling of 

the processes.  Some of the simulation tools used in academics and industries for 

example, ARENA and Automod are suitable only for the abstract design stage of the 
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production line. They do not include the behavior of the control systems into the 

simulation. These models are not suitable for a detailed design and analysis [2].  

Production lines are usually controlled by different types of controllers for example, 

microcontrollers and Programmable Logic Controllers (PLCs). For more complex 

applications, PLCs are largely preferred over microcontrollers. Unlike microcontrollers, 

PLCs can be reprogrammed any number of times and also have a larger flexibility of 

adding more inputs and outputs. This serves as an advantage for PLCs over 

microcontrollers. PLCs are the most widely accepted controllers in the modern 

manufacturing industries. The simulation tools mentioned earlier lack this detailed level 

of control logic which regulates the material flow between different processes.  

A detailed simulation model enables virtual verification of the production line which can 

foretell the production capability of the system and also verify the correctness of the 

control programs in conjunction with the surrounding equipment [2]. As PLCs are the 

most preferred type of controllers in the industries, integrating PLCs into the graphical 

simulation environment helps in generating a more realistic model. Verifying the PLC 

programs with the 3D simulation models enables detection of errors in the early phase. 

Correcting the errors in the control program in the early phase reduces the actual 

commissioning time of a production line by up to 25% [3].  

The objective of this master thesis is to develop a generic PLC integration concept for a 

graphical simulation system, such that simulation models can be verified along with the 

control programs. Developing a controller object in the simulation environment which 

can interpret the PLC programs is a tedious task. Instead, external PLCs can be used to 

control the behavior of the simulation model. External PLCs can reproduce a more 

accurate behavior of the control system. More specifically, external hardware PLCs can 

be used to carry out the verification process under laboratory conditions.  

To get a good overview of the thesis, it is very important to get an introduction into the 

important knowledge areas like virtual commissioning, PLCs, simulation software and 

different modes of communication. The state of the art chapter gives an overview of 

actual commissioning and concepts underlying the virtual commissioning. Further, this 

chapter introduces to the different software and tools used to realize the concept of 

generic PLC integration. 
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In this master thesis a generic controller object is developed in the simulation 

environment which communicates with external PLCs. The external PLC can be a 

simulated or hardware PLC from any PLC manufacturer. The controller object receives 

the input signals from various sensors in the simulation environment and sends these 

input signals to the external PLC. The external PLC then generates appropriate output 

signals after processing the input signals and the user program stored in the memory of 

the PLC. These outputs are written back to the outputs of simulation environments 

controller object. The controller object’s outputs are connected to the actuators in the 

simulation environment. The Methodology chapter provides an overview of the 

controller object in the simulation environment and explains its generic nature and ability 

to connect to more than one external PLC.  

Adhering to the concept demonstrated in the methodology chapter, a generic controller 

object is developed. The Implementation chapter explains the development and features 

of the generic controller object. To demonstrate the ability of the generic controller object 

to connect to different PLCs, connections to two types of external PLCs, a simulated PLC 

and a hardware PLC are implemented in this master thesis. Connections to both these 

external PLCs can be configured in the controller object. Communication between the 

controller object and the simulated PLC is via a COM object and the communication 

between the controller object and the hardware PLC is via an OPC client-server 

configuration.  

The Validation chapter demonstrates the operation of the controller object with the help 

of a mechatronic model developed in the VEROSIM simulation environment. Inputs and 

outputs of the controller object are connected to the sensors and actuators in the model. 

PLC programs to control the behavior of the mechatronic model are developed using 

PLC program development software and downloaded on to the simulated PLC and 

hardware PLC. Connections to both simulated PLC and hardware PLC are configured in 

the controller object. The behavior of the mechatronic model is validated by making one 

of the configured connections active at a time. The response of the PLC program and the 

mechatronic model is validated by switching between the configured connections to the 

two external PLCs.   
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2 State of the Art 

Virtual verification of the production lines can be done if 3D simulation models of the 

production line are more realistic. Integrating PLCs into the simulation environment 

makes the models more realistic and the mechatronic behavior of the production line can 

be verified in conjunction with control programs. This helps in reducing the errors 

detected in the actual commissioning phase, thus reducing the unnecessary delays and 

additional costs. This chapter includes a detailed description of the concepts underlying 

virtual commissioning and its advantage over traditional commissioning without prior 

virtual simulation. After understanding the concept of virtual commissioning, the 

requirements for realization of a virtual commissioning project are listed. Further 

different tools and software used to demonstrate the PLC integration concept is this thesis 

are discussed.  

2.1 Actual Commissioning 

Traditional development of manufacturing systems is carried out in different phases: 

Design of production facility, mechanical engineering, electrical engineering and 

automation engineering [4]. The design of the production facility is the first step in the 

traditional commissioning process. It involves decisions concerning the layout of the 

factory floor, placement of the machines and the staff in the manufacturing operation. 

This is an important component in the overall operation in terms of manufacturing 

process effectiveness and meeting the needs of the employees. The basic objective of the 

facility design is to ensure smooth flow of materials and information through the system. 

A poor design can lead to large volume of inventory, inefficiency and inflexibility. Also 

changing the layout in the later stages after the installation of all the machinery can be 

very expensive, thus it is important to get the design right before the installation of the 

machines.  

The second step is the mechanical engineering phase, which involves commissioning of 

all the heavy machineries, robots, sensors and actuators required for the manufacturing 

process. The placement of these components is done according to the plan developed in 

the previous step of facility design. The third step is the electrical engineering phase, 
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where the electrical energy supply is established to the various machines, sensors and 

actuators.  

The next step is automation engineering. In this step various controllers required for 

controlling the machines are installed. The connections to the various equipment, sensors 

and actuators from the controllers are also established for example via a field bus. The 

different kinds of controllers used in industry are for example, microcontrollers, PLCs 

etc. Since the modern production lines are highly automated with complex tasks, the 

PLCs are the more obvious choice for the controllers. At this stage after installing the 

controllers the functionality of each device is verified. Any errors encountered are 

corrected. Once all the machines are running error free, the production of the goods 

begins. 

All the steps mentioned in traditional method of commissioning are carried out in a 

sequential manner. The verification and documentation of each of the stage is also 

performed separately [5]. Following the traditional method of commissioning, 

installation of PLCs and verification of the PLC programs is done in the last stage of 

commissioning. Thus the automation engineer has to wait for the verification of the PLC 

programs till all the machines and the surrounding equipment are installed in the 

production site. Since the PLC programs are not verified in conjunction with the 

surrounding machinery before installation, errors may be encountered, which in some 

cases can cause damage to the surrounding machines or the PLC itself or both. This leads 

to unnecessary delays and additional costs.  

The modern production plants are highly automated and a majority of the functionalities 

are controlled by the control programs in these plants. As cited by Reinhart and Wünsch 

[3], up to one fourth of the total project life cycle time is accounted by the process of 

commissioning. Delays and activities related to electric and control devices consume up 

to 90% of the total commissioning time. Out of this nearly 70% of the delays are caused 

because of the errors in the control software. This is illustrated in figure 2.1. 
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Figure 2.1: Delays in the process of commissioning [3] 

The delays caused due to the errors in the control program can be minimized by verifying 

the correctness of control programs and its interaction with the surrounding machines. 

Using a virtual environment for the verification is a safe and economic solution. 

Simulation is a powerful tool to overcome the hurdles witnessed in the traditional method 

of commissioning to a larger extent. It helps to analyze the manufacturing systems from 

the design and ongoing operation prospective. Technological developments and 

increasingly efficient computing platforms have significantly enhanced the process of 

modeling, simulation and analysis. This has enabled digital processing of complex tasks 

in manufacturing process with the aid of high-fidelity models of the manufacturing 

system and the surrounding environment. 3D simulation models help in validation of the 

systems prior to installation, thus accelerating the process of planning and 

implementation of manufacturing systems. As indicated in [6], realization of the 

production system in terms of 3D models belong to the scope of Digital Factory. Digital 

factory is defined as “a generic term for a comprehensive network of digital models and 

methods including simulation and 3D visualization. Its purpose is the integrated 

planning, implementation, control and continual improvement of all essential factory 

processes and resources associated with the product” [7]. 
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2.2 Virtual Commissioning 

Use of realistic and accurate 3D simulation to validate the functions of production 

equipment control system prior to actual implementation is termed as “Virtual 

Commissioning” [8]. Virtual Commissioning can be a valuable tool for assembly line 

design engineers in a sense that it can provide decision making support to important 

decisions like for example, type and number of resources to be used within an assembly 

line or selection of communication and interfacing protocols between the resources [4].  

Virtual commissioning serves as an advantage during the actual commissioning process 

by minimizing the delays and additional costs. Tests conducted to evaluate the cost 

benefits of virtual commissioning as described in [3], shows that the software quality in 

terms of fulfilled requirements was improved by more than 100% whereas the 

commissioning time was reduced by 25%.  

In the process of Virtual Commissioning a virtual model of the plant is used to replicate 

the mechatronic behavior of the different machines and equipment and a real or simulated 

PLC is used for the control programs. The possible combinations between reality and 

simulation with the aim of verification of the PLC programs are as shown in the figure 

2.2. 

 

Figure 2.2: Possible combinations between reality and simulation [9] 
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1  Traditional commissioning: real plant and a real control system. 

2  Reality in Loop (RIL): real plant and a simulated control system. 

3  Software in Loop (SIL): Simulated plant and a simulated control system. 

4  Hardware in Loop (HIL): simulated plant and a real control system. 

Involving a real plant and a real control system (1) is the traditional method of 

commissioning. Any errors encountered in the control programs might cause serious 

damage to the plant equipment or PLC or both. This leads to additional delays and costs 

during the commissioning process. As indicated earlier a major part of the control 

engineering during commissioning is accounted to the errors in the control programs.  

The second combination is RIL (2) method. This includes a real plant and a simulated 

PLC. Since a real plant is involved in this method, the risk of damaging the machines 

and equipment in the plant is still not eliminated.  

The SIL (3) method of virtual commissioning is one of the safest and economic methods. 

This includes a simulated plant and a simulated control system, therefore minimizing the 

costs caused by the errors in the control program. This method of verification can be 

performed parallel to the earlier steps of actual commissioning once the design of the 

production facility is done. Thus SIL method of virtual commissioning saves a lot of time 

during the actual commissioning.  One of the disadvantages of SIL method as pointed 

out in [3] is, the low availability of up-to date control simulation packages for a particular 

control version. Therefore the control software cannot provide an exact reproduction of 

the control behavior [4]. 

In the last method of HIL (4) simulation, a virtual plant model is used in conjunction with 

a real control system. In this method the advantage over the SIL method is that the control 

engineers can perform the testing of complex control and automation scenarios under 

laboratory conditions [3]. Also the PLCs used for verification of the control programs 

along with the virtual environment can be directly used in the real production facility. 

Both SIL and HIL are less costly approaches compared to the rest, as virtual 

environments are used instead of real world systems. These approaches minimize the 

errors in the PLC programs, reduce the risk of damaged equipment subsequently 
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decreasing the actual commissioning time and increasing the quality of manufacturing 

system. 

2.3 Requirements for Realization of a Virtual 

Commissioning Project 

The following are the requirements for the realization of a virtual commissioning project 

[4]:  

1 3D models of the equipment and other resources to be commissioned, including 

information about the geometries, kinematics and electrics. 

2 The layout of the production facility, involving the placement of all the resources 

and   equipment. 

3 Knowledge of the material flow in the production facility, including the sequence of 

operations and interdependencies in the production process. 

4 The real or a simulated control system. Either a real PLC or a simulated one can be 

used to demonstrate the two possible methods for verifying PLC programs. 

5 Detailed definitions of the PLC’s input and output (I/O) signals including their 

respective mapping to the resources within the simulated environment. 

6 Detailed definition of the extra functionalities and signals such as, alarm or safety 

systems    that are to be included in the commissioning process.  

7 Software drivers and communication protocols for establishing the communication 

between the simulation model and the control system. 

2.4 Simulation Software 

Modeling and simulation software are of great help in the field of engineering. It is very 

common to use block oriented simulation systems such as MATLAB/SIMULINK [10] 

or Modelica modeling language [11] to develop controllers . FEM analysis tool (for 

example, cosmol [12]) are used to test and verify component layouts. Increasingly more 

efficient computing platforms have facilitated the development for 3D modeling and 

simulation software which are capable of producing more realistic replica of the real 

system. Focusing on 3D simulation technology, various approaches can be found for 

development of mobile robots (for example, gazebo [14]) or generic mechatronic systems 
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(for example, simmechanics from mathworks [16]). As stated in [13] these software still 

lack a holistic and encompassing approach that enables and encourages the synergetic 

use of simulation methods on a single database throughout the entire lifecycles of 

technical systems. A new simulation system architecture was developed to overcome 

these limitations. 

 

Figure 2.3: VEROSIM micro kernel architecture [13] 

The idea of VEROSIM is introduction of a micro kernel, the “Versatile Simulation 

Database” (VSD) figure 2.3. VSD is an object oriented real-time database holding a 

description of underlying simulation model. It is fully implemented in C++ and provides 

the central building blocks for data management, meta information, communication, 

persistence, and user interaction. VSD is said to be “active” as it contains algorithms and 

interfaces to manipulate data along with static data container. Furthermore VSD also 

indicates the user about addition, deletion or change in event through intelligent 

messaging systems. In addition VSD also provides essential functionalities for parallel 

and distributed simulation. Specialized plugins are built upon the VSD core that aids in 

achieving all simulation functionality of the framework by interacting with the VSD core.  

The comprehensive 3D simulation system VEROSIM is built on the basis of the basic 

simulation system architecture. The key modules like for example data storage, 
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visualization, kinematics, sensor/actuator framework and more for 3D simulation are 

developed by extending the VSD kernel in various directions.  

All the key components are accessible via a comprehensive graphical user interface in 

desktop applications and projection environments. A textual interface is available on 

platforms which do not support 3D rendering. Also all these interfaces can be used 

simultaneously. 

The VEROSIM 3D simulation framework has been used to realize a variety of different 

applications, currently focusing more on the areas of environment (e.g. forest inventory 

or forest machines), industry (e.g. industrial automation) and space (e.g. space robots). 

The figures 2.4 to 2.6 show the user interface of the VEROSIM environment. Figure 2.4 

is the main window for modeling the mechatronic systems. The ‘Model explorer” (on the 

left side) holds the list of all the elements added to the model by the user. The ‘Property 

widget’ (on the right side) shows the properties of the element selected element in the 

model explorer. For example the property ‘Modify frame’ allows the user to modify the 

position and the property ‘Scaling’ allows the user to modify the size of the selected 

element.  



   

12 

 

 

Figure 2.4: VEROSIM modeling environment 
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The IO editor (figure 2.5) enables the user to make the connections between various 

components. 

 

Figure 2.5: VEROSIM IO editor 
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The model library (figure 2.6) gives a list of industrial components and robots offered by 

VEROSIM. These components can be readily used by the user in developing complex 

systems.  

 

Figure 2.6: VEROSIM model library 

2.5 Programmable Logic Controllers 

“A programmable logic controller (PLC) is a special form of microprocessor-based 

controller, that uses a programmable memory to store instructions and to implement 

functions such as logic, sequencing, timing, counting and arithmetic in order to control 

machines and processes” [15]. Having the ability to be re-programmed any number of 

times and able to control more than one device at a time makes PLCs a more preferred 

choice over other controllers like for example, microcontrollers.  
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PLCs are similar to computers but built in a more suitable way for industrial 

environments. They are designed in a rugged way to withstand the noise, vibrations, 

temperatures and humidity in an industrial environment. Components of a typical PLC 

system are as shown in the figure 2.7.  

 

Figure 2.7: PLC system [15] 

 The power supply unit converts the incoming high voltage power to the required 

voltage levels for processor, circuits in the input and output module and other 

components.  

 The Central Processing Unit (CPU) generates the output signals for the control 

actions depending on the inputs received and the instructions stored in the program 

memory of the controller.  

 The programming device is used to develop the PLC programs, which are then 

downloaded on to the memory of the PLC device.  

 The memory of the PLC system consists of several elements such as, ROM for 

permanent storage of the operating system and the data used by the system, RAM for 

the storage of user programs and data.  
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 Input module is where the device receives the input signals from various sensors and 

switches.  

 The Output module communicates the signals to the external actuators like for 

example, motor, valves etc. The input and output modules can be digital or analog 

depending on the type of sensors and actuators connected.  

 Transmitting and receiving data from remote PLCs, Human Machine Interface (HMI) 

panels, SCADA (Supervisory Control And Data Acquisition) systems etc. are 

handled by the Communication interface.  

 The Programming device can be for example: a personal computer. The PLC 

manufacturers have programming software for their PLCs. For some PLCs a special 

communication card is required to download the programs onto a real PLC whereas 

for some PLCs just having the appropriate software on the computer is sufficient.  

The two common types of mechanical design for PLC system are, a single box type or a 

modular/rack type. The single box type is supplied as an integral compact package with 

power supply, processor, memory, inputs and outputs. Since the number of inputs and 

outputs are fixed in this type of PLC, they are generally preferred for small scale 

applications. The PLCs of modular/rack type are more flexible in terms of number of 

inputs and outputs. This type of PLC system consists of separate modules for each of the 

PLC components like, power supply, CPU, inputs and outputs, communication interface, 

etc. The user can decide about the number and type of modules required depending on 

its application. Thus the number of input and output modules can be expanded depending 

on the application the PLC is used for. [15] 

For programming, most of the PLCs adopt the programming languages described by the 

international standard IEC 61131-3. The IEC 61131-3 defines textual and graphical 

languages for writing the application programs [17]. The PLC manufacturer provides 

programming software which allows the user to write the application programs in any of 

the standard programming languages. For example, Siemens has the software SIMATIC 

STEP 7, which complies with the international standard IEC 61131-3. Following is a 

brief description of the standard programming languages as defined by IEC 61131-3:  

 

 Ladder logic (LD): This is one of the most commonly used methods of programming 

the PLCs and this is equivalent to drawing a switching circuits. Two vertical lines 
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represent the power rails in the ladder diagram. And circuits are connected between 

these two vertical lines.  

 Function block diagram (FBD): In FBD the PLC programs are described in terms of 

graphical blocks. A FBD is a program instruction unit with one or more inputs and 

yields one or more outputs when executed.  

 Instruction list (IL): This is a textual programming language similar to the assembly 

programming language. The programs written in instruction list consists a series of 

instructions, each beginning on a new line. It consists of operators followed by one 

or more operands. Each instruction is represented by using mnemonic codes. The 

codes differ from one manufacturer to other.  

 Sequential Function Chart (SFC): The SFC is used to represent the operation in a 

pictorial format. It shows the sequence of events involved in the operations. Different 

events are represented by steps or states. Each step is connected to the next one 

through transition conditions, which have to be realized before the execution can 

move on to the next step from the previous step.  

 Structures Text (ST): The ST language contains list of statements separated by 

semicolon.  The Siemens Structure Text language is known as SCL (Structure 

Control Language). It is a high level textual programming language based on 

PASCAL (S7 SCL manual referred). 

As a general practice complex control tasks are broken down into many simpler tasks 

and each task is implemented in a separate block which is termed as Program 

Organization Unit (POU) [17]. The PLC executes these POU’s continuously in a cyclic 

manner, reading the inputs and updating the outputs [15] (figure 2.8).  
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Figure 2.8: PLC operation [15] 

In this master thesis, the PLC integration concept is demonstrated using a simulated PLC 

and a real hardware PLC are used. The simulated PLC S7–PLCSIM and the hardware 

PLC S7-300 from Siemens are used. The Siemens software STEP 7 is used to write the 

control programs for the model developed using VEROSIM. The Siemens STEP 7 

(version) standard software package is used for configuration of the simulated and 

hardware PLC.  

2.5.1 S7-PLCSIM 

The main advantage of using a simulated PLC with the virtual model of production line 

is that the control programs can be verified without the use of any hardware. Since no 

hardware component is involved in the process of verification of the model, this 

eliminates the risk of damaging any of the machines or controllers involved in the 

production line. S7-PLCSIM is the simulated PLC made by Siemens, which allows the 

user to test the control programs without connecting to the S7 hardware.  

S7-PLCSIM provides a simple graphical user interface to the STEP 7 user program, 

which can be used for monitoring and modifying different objects like for example, input 

and output variables. Also the operating mode of the simulated PLC can be controlled 

via the interface.  
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The simulation view window is as shown in the figure 2.9. The CPU is added to the 

simulation window automatically on start of the S7-PLCSIM application. Later the 

variables required to be monitored can be added from the option in the toolbar. [18] 

 

Figure 2.9: PLCSIM simulation view window 

2.5.2 Siemens S7-300 PLC 

The second type of PLC used to demonstrate the generic PLC integration concept is a 

real hardware PLC. As indicated earlier the low availability of up-to date control 

simulation packages for a particular control version serves as an disadvantage for using 

a simulated PLC [3]. Using a hardware PLC the control engineers can perform the tests 

under more realistic conditions.   

A Siemens S7-300 PLC is used in this thesis. This is a modular/rack type PLC. The first 

module on the PLC rack is the power supply. Followed by the power supply is the CPU 

and the input and output module. Last is the communication module which helps in 

connecting the PLC with the PC.  
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Figure 2.10: Siemens S7-300 PLC 

The CPU used here is CPU 314-C 2 PD/DP. The input output module is 

DI8/DO8xDC24V/0.5A. The communication interface used is CP 343-1 Advanced. The 

communication interface communicates efficiently with the PLC’s CPU, OPC server and 

the programming device via a TCP connection.  

2.5.3 Siemens STEP 7 

STEP 7 is the standard software package by Siemens used for the purpose of configuring 

and programming SIMATIC programmable logic controllers. The STEP 7 standard 

package provides a series of applications within the software. The figure 2.11 shows the 

applications/tools provided by the STEP 7 standard [19].  
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Figure 2.11: Siemens STEP 7 standard software package [19] 

 SIMATIC manager: The SIMATIC manager manages all the data that belongs to the 

automation project.  

 Symbol editor: The symbol editor manages all the shared symbols. This allows the 

user to set the symbolic names and comments for the process signals.  

 Programming languages: The SIMATIC programming languages integrated in 

STEP 7 are compliant with IEC 61131-3 standard PLC programming languages. 

Ladder logic (LAD), Statement list (STL), and Function block diagram (FBD) are an 

integral part of the standard STEP 7 package. Other programming languages are 

available as optional packages.  

 Hardware configuration: The hardware configuration tool enables user to configure 

and assign parameters to the hardware of an automation project.  

 Hardware diagnostic: The hardware diagnostic provides an overview of the status of 

the PLC. This displays general information of the module and its status. Any faults 

in the modules are also indicated. 

 NetPro (Network configuration): Using the NetPro cyclic data transfer via the MPI 

is possible, where the user can the connections and blocks to the CPU.  
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2.6 Communication Modes 

In order to simulate the behavior of the virtual model according to the control programs 

on an external PLC, communication needs to be established between the virtual model 

and the external PLC. Since in this master thesis two different kinds of PLCs are used, 

both of them communicate with the virtual model using different modes of 

communication. For communicating with the simulated PLC S7-PLCSIM a COM object 

called S7ProSim is used. In case of the hardware PLC, the communication between the 

virtual model and hardware PLC is established though an OPC (OLE for Process Control) 

connection. (OLE: Object Linking and Embedding).  

2.6.1 S7ProSim 

S7Prosim is a COM object, which provides programmatic access to the simulated PLC 

S7-PLCSIM. Using S7ProSim the user can write software programs that can perform 

tasks such as running the control program in single scan mode, reading or writing 

controller values, and many other work steps.  

To be able to use the S7ProSim COM object in the project, a reference is added to the 

object in the project. After adding the reference to the project, various methods provided 

by the COM object are used to communicate with the S7-PLCSIM. Following are a few 

methods provided by the S7ProSim: 

 Connect: Connects the S7ProSim to S7-PLCSIM. 

 ConnectExt: Connects the S7ProSim to the S7-PLCSIM instance with number 

InstanceNumber.  

 Disconnect: Disconnects the S7ProSim form S7-PLCSIM. 

 GetScanMode: Reports the operating mode of S7-PLCSIM. 

 ReadDataBlockValue: Reads a particular bit, byte, word, or double word from the 

DB memory area of S7-PLCSIM. 

 ReadOutputImage: Reads elements from the peripheral outputs (PQ memory area) of 

S7-PLCSIM. 

 WriteDataBlockValue: Writes a particular bit, byte, word, or double word to the DB 

memory area of S7-PLCSIM. 
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 WriteInputImage: Writes elements to the peripheral inputs (PI memory area) of S7-

PLCSIM, starting at the StartIndex of the data to which pData points. 

2.6.2 OPC 

OPC is a technical specification that defines a set of standard industrial software 

interfaces based upon Microsoft’s OLE/COM technology [20]. The acronym OPC is 

derived from OLE (Object Linking and Embedding) for Process Control. 

[OPCFoundation.org].  

Before the development of the OPC standard, industrial software applications that access 

the process data were restricted to the access techniques of the communication network 

of one manufacturer. For a particular hardware device, each software application must 

include a separate driver. This posed some problems in terms of having devices from 

different vendors for one particular application. The customer was bound to use all the 

required components of the control system from the same vendor. The standardized OPC 

interface now allows the user to have uniform access to communication networks of any 

vendor via the OPC interface. [21]  

There are several specifications released by the OPC foundation for enabling data 

communication on the basis of a client-server architecture. The interface which allows 

the exchange of events and data between application, OPC server, OPC client and the 

device are defined by the OPC specification. The most common specifications are 

described below in brief [22]:  

 OPC Data Access specification (OPC-DA): This was the first specification released 

by the OPC foundation [22]. This enables communication of process data between 

one or more data resources and clients [23].  The data resource can be located on the 

same computer as the client or the data resource can be a sensor or control and 

automation unit connected through a communication network. 

 OPC Alarm and Event specification (OPC-AE): The OPC Alarm and Event 

specification defines an interface for servers and client for transmission and 

acknowledgement of the alarms and events in a structured manner [22]. Data from 

different sources like for example, PLC, and sensors can be received by the AE 
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server. The OPC-DA server and OPC-AE server can access data from the same data 

resource. The difference is that, OPC-DA provides continuous data stream and the 

OPC-AE server’s data stream is triggered by the change in the event like for example, 

temperature crossing a certain threshold etc. [20]  

 OPC Historical Data Access Specification (OPC-HDA): The OPC-HDA server 

provides the client, access to the historical data. The historical data can be presented 

in a simple row data manner or in the form of aggregated data which is the processed 

data [22].  

In this master thesis the OPC client- server software from Softing [reference needed] is 

used. The OPC server fetches the data from the real S7-300 PLC connected via a TCP/IP 

connection. The OPC client then accesses the data from the OPC server, which is later 

communicated to the 3D simulated model.  

2.6.3 Softing OPC Server Ethernet  

The OPC server Ethernet from Softing enables the exchange of data between the field 

device (PLC) from a wide range of manufacturers and OPC client via Ethernet TCP/IP. 

The OPC client server interface provided by Softing is based on the OPC-DA 

specification provided by the OPC foundation. An OPC server allows one or more OPC 

clients to access process data via this interface. 

The OPC-DA specification allows exchange of data between one or more OPC servers 

and client in a continuous manner. In the OPC-DA specification three hierarchical classes 

are defined: OPCServer, OPCGroup, and OPCItem. An object of class OPCServer 

represents manufacturer specific OPC server.  The variables used by OPC server are 

structured in the object of class OPCGroup. With the OPCGroup the client is able to 

create a list of useful variables. An OPCItem is the actual process variable accessed by 

the client.  

The NetCon OPC is the graphic interface for configuring and diagnosing the OPC server. 

The GUI connects with the OPC server core via TCP/IP connection. The OPC server 

from Softing has the name INAT TCPIPH1 OPC Server. Along with the OPC server, a 

test OPC client is also installed. The OPC client determines the OPC servers already 
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installed and offers to connect to them on the start of the OPC client. After connecting to 

the OPC server, a new OPCGroup can be created in the client. The process variables of 

interest are added as OPCItem in the OPCGroup.  
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3 Methodology 

This chapter focuses on the methodology adopted to integrate different types of external 

PLCs into a graphical simulation environment and the virtual verification of the 

simulated mechatronic model. Further this chapter provides a basic idea of the generic 

controller object developed in this master thesis and the design of the communication 

architecture between the controller object and the external PLC.   

3.1 Steps for Virtual Verification of the PLC Program 

Figure 3.1 shows the steps involved in the process of verifying the PLC programs in 

conjunction with a simulation model.  
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Figure 3.1: Steps in virtual verification of PLC programs 

In step (1) the design for the factory layout is developed. This step defines the placement 

of various equipment, sensors and actuators, number of controllers required and the flow 

of material from one station to the next in the production system.  As the flow of material 

from one station to the next in the production system is known, sequence of operations 

to be carried out by the controllers at every station can now be defined in brief. After the 

sequence of operations for each of the controllers is defined, the inputs and outputs of 

the respective controller can be listed. This list of inputs and outputs is used in the later 

stages of implementing the control programs.  
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In step (2) a 3D model of the production system is developed in accordance with the 

layout from the previous step using a simulation software. Some simulation software 

provide a library of basic industrial components such as conveyor belts, sensors, switches 

etc. These components can be directly used in developing complex systems. In case of 

absence of one or more components, CAD models of the missing components have to be 

developed by using other appropriate software and then import these CAD models into 

the 3D simulation environment.  

Since PLCs are the more preferred choice of controllers in industries, the type of 

controllers used in this master thesis are PLCs. The process of implementation of the of 

the control programs which govern the behavior of the model can be done in parallel with 

the development of simulation model since, the material flow in the plant, sensors and 

actuators, and the list of inputs and outputs of the controllers in the simulation model are 

known in advance. As shown in the figure 3.1, step (3) represents the development of the 

PLC programs 

After the PLC programs are implemented, they are downloaded to an external PLC. 

Communication should be established between the simulation model and this external 

PLC. This is shown as step (4) in the figure 3.1. The mode of communication between 

the simulation model and the PLC depends on whether the external PLC is a hardware 

or a simulated PLC, and on the possible means of communication offered by the PLC 

and the simulation software.  

PLC programs can be verified with the model after a successful communication is 

established between the two (step (5) in the figure 3.1). The inputs from the sensors are 

transmitted to the external PLC, which generates appropriate control signals depending 

on the instructions stored by the user in the memory of the PLC. The outputs are 

communicated back to the simulated model. The models behavior should expose any 

errors in the control program, the model itself or both. Any errors in the simulated plant 

can be corrected in the simulation and in case these errors are also present in the design 

of the plant, the correction can be applied upstream to the design documents. The PLC 

programs can be edited with minimal effort and downloaded to the simulated or hardware 

PLC to correct any errors. Once the model and the PLC programs run error free, the 

control programs are ready to be downloaded to the real PLCs for the actual 

commissioning of the plant. If a simulated PLC was used for the simulation, an additional 
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simulation run with a hardware PLC might be included before commissioning to verify 

the correctness of the program on real hardware.   

3.2 Communication with the External PLC 

Figure 3.2 illustrates the basic idea adopted to integrate the external PLC into a graphic 

simulation environment. The simulation model consists of various objects like such as, 

work-pieces, sensors, actuators, conveyor systems etc. Communication between the 

simulation model and the external PLC is such that, the inputs from the sensors in the 

simulation model are connected to the inputs of the external PLC and the outputs of the 

PLC are connected to various actuators in the simulation model.  

 

Figure 3.2: Integration of external PLC into a graphic simulation environment 

For the simulation model to be able to exchange inputs and outputs with the external PLC 

an appropriate communication interface is needed. Figure 3.3 shows the concept of such 

an interface that facilitates the exchange of data between the simulated model and the 

external PLC. 
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Figure 3.3: Exchange of data between simulation model and external PLC 

The choice of the communication interface between the simulation model and the 

external PLC depends on the software used for development of the simulation model as 

well as on the type of the external PLC. The sensor data from the simulation model is 

transmitted to inputs of the external PLC via the communication interface. The PLC 

generates appropriate output signals to be sent to the actuators. These actuator signals are 

communicated back to the simulation model via the communication interface.  

Connecting every signal from the sensors in the simulation model to the inputs of the 

external PLC and every output of the PLC to respective actuators in the simulation model 

will make the process of integrating external PLC into simulation environment a very 

complex procedure. To overcome this problem, a controller object is developed in the 

simulation environment. The controller object acts as an internal PLC with inputs and 

outputs. Figure 3.4 describes the role of this controller object in the process of integrating 

external PLC into simulation environment. The simulation model consists of various 

objects like such as, work-pieces, sensors, actuators, conveyor systems etc. The sensors 

receive the necessary information from the simulation model and serves as inputs to the 

controller object. The controller object’s function is to read the inputs and generate 

appropriate output signals. The outputs of the controller object are connected to the 

actuators. The controller object in the simulation model is not capable of processing the 

input signals, interpreting the instructions and generating the output signals. It merely 

serves as an interface to an external PLC which contains the user program necessary to 

control the behavior of the simulation model.  
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Figure 3.4: Role of controller object in the graphic simulation environment. 

Communication between controller object in the simulation environment and the external 

PLC is established such that, the inputs of the controller object in the simulation 

environment are mapped to the inputs of the external PLC. The external PLC generates 

the output signals according to the user programs stored in its memory. The outputs are 

then mapped to the controller object in the simulation environment. This communication 

between the controller object and the external PLC can be established using various 

communication protocols such as COM and OPC. 
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The PLC programs required for controlling the mechatronic behavior of the machine in 

the simulated plant model are developed using a PLC program development software. 

Later these programs are downloaded to the memory of the external PLC. 

As the main objective of this thesis is to develop a generic PLC integration concept, the 

controller object in the simulation environment should be able to communicate with 

different types of external PLCs. Figure 3.5 illustrates the concept of the generic 

controller object in the simulation environment. It includes inputs and outputs that 

connect to the sensors and actuators. The controller object can be configured to 

communicate with different type of external PLCs, however to avoid conflicts, only 

connection to one of the external PLCs be active at a given time.  

 

Figure 3.5: Concept of a generic controller object 

The connection between the controller object in the simulation environment and external 

PLC is as illustrated in the figure 3.4. The inputs and outputs of the controller object are 

mapped to the inputs and outputs of the PLC having an active connection to the controller 

object.  
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To realize connections to more than one type of external PLC, the controller object in the 

simulation environment is developed as shown in the figure 3.6.  

 

Figure 3.6: Overview of the generic controller object 

To facilitate connection to more than one external PLC using a single controller object 

in the simulation environment, the concept of ‘connectors’ is introduced. Connectors are 

objects with inputs and outputs which communicate with the external PLCs. Connectors 

exchange inputs and outputs with the external PLC via a communication interface.  

As sensors and actuators in the simulation model are connected to the generic controller 

object and the external PLC exchanges the input-output data with the connector, some 

kind of communication should exist between the generic controller object and connector 

so that the simulation model behaves in accordance with the control program running on 

the external PLC.  

‘IO maps’ in the controllers as shown in the figure 3.6, perform the function of mapping 

inputs and outputs of the generic controller object and the connector. Each of the 

connector creates IO maps which map their respective inputs and outputs to the inputs 

and outputs of the controller object. In order to avoid the conflict, only the IO maps of 

the active connector are made effective during the simulation. 
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To demonstrate the ability of the controller object to connect to more than one external 

PLC, integration with two different types of PLCs is prototypically developed. This is 

illustrated in the figure 3.7. 

 

Figure 3.7: Prototype implementation of the generic controller object 

Connection to external simulated PLC S7-PLCSIM and hardware PLC S7-300 is 

implemented in this thesis. Since the controller object is developed in a generic manner 

connection to any other type of PLC can be easily integrated.  
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4 Implementation 

This chapter describes the implementation of the proposed PLC integration within a 

graphic simulation environment. The internal controller object as described in the 

previous chapter is developed in the VEROSIM environment. The controller object is 

capable of communicating with external PLCs. The controller object in the simulation 

environment is called ‘PLCNode’. The PLCNode will be capable of communicating with 

different types of external PLCs. Currently communication interfaces with two types are 

implemented: simulated PLC S7-PLCSIM and hardware PLC S7-300. Figure 4.1 gives 

an overview of the implementation of the PLCNode.  

The PLCNode has several inputs and outputs which corresponds to the inputs and outputs 

of the connected PLC. These inputs and outputs of the PLCNode are connected to the 

sensors and actuators in the VEROSIM model. Connectors configured in this PLCNode 

communicate with the external PLCs. As communication with two types of PLCs is 

implemented in this master thesis, two types of connectors can be configured in the 

PLCNode. From the figure 4.1, one of the connectors is of type ConnectorPLCSim, 

which communicates with the external simulated PLC Siemens S7-PLCSIM. The other 

connector is of the type ConnectorOPC, which communicates with the external hardware 

PLC SIMATIC S7-300 from Siemens. 
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Figure 4.1: Integration of external PLCs into VEROSIM 

To have a better understanding of the implementation of PLCNode it is necessary to get 

acquainted with some basic concepts necessary for development of new interfaces in the 

VEROSIM environment. Concepts in VEROSIM such as plugin, extension, reference 

etc. are discussed further.  

VEROSIM framework is based on the concept of scene graph and the core database is 

organized as a directed acyclic graph. Addition of arbitrary data to this graph is based on 

methods in object oriented modeling. [24]  
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All simulation functionalities of the framework are achieved by creating specialized 

plugins which interact with the VSD core. Various simulation and data processing 

algorithms, interfaces to hardware and software systems, user interfaces etc. are 

implemented as plugins. Using the VSD, the plugins can communicate with the database, 

as well as establish directed communication between themselves. [24] 

Specializations of already existing classes of ‘nodes’ are created through inheritance. 

‘Nodes’ can have properties, and modeling of aspects of real world objects is easily 

carried out by storing arbitrary information in properties. [24] 

The concept of ‘extension’ is introduced to cover relations other that exist between 

objects. “An extension can be interpreted as an active property added to a node in order 

to extend its capabilities”. As additional degree of specialization is added to the existing 

object, extensions can be thought as similar to the concept of inheritance. But, in contrast 

to the static nature of inheritance, the extensions are dynamic allowing the specialization 

of the nodes to be created in runtime. Special attributes can be added to the node or 

removed from the node according to the situation with the help of extensions. [24]  

In the VEROSIM database properties are allowed to hold ‘reference’ to other nodes 

within the database. This allows to model more complex relationships (for example, for 

closed loop kinematics) breaking with the acyclic nature of the basic scene graph [24].  

Similar to other functionalities in VEROSIM, the PLC object is developed as a plugin 

interacts with the VSD core. The implementation of the PLCNode and communication 

to external simulated and hardware PLC is done in three distinct plugins namely 

VSPluginPLCSim, VSPluginOPCClient and VSPluginPLCConnection. 

 VSPluginPLCConnection: The plugin VSPluginPLCConnection provides the 

PLCNode, which acts as an internal controller object with inputs and outputs. The 

creation of different connectors managed by the plugin VSPluginPLCConnection. 

When more than one connectors are configured in the PLCNode, the plugin enables 

communication with only one of the configured connectors at a given time depending 

on the connector in the property currentConnector.  

 VSPluginPLCSim: The plugin VSPluginPLCSim creates a PLCSim Extension which 

is used by the ConnectorPLCSim. It is responsible for establishing the 
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communication between the PLCNode in the simulation environment and the 

external simulated PLC. The communication is done via the COM object S7ProSim.  

 VSPluginOPCClient: The plugin VSPluginOPCClient creates an OPCClient node 

which is used by the PLCNode’s ConnectorOPC. It is responsible for establishing 

the communication between the PLCNode in the simulation environment and the 

external hardware PLC. The communication with the hardware PLC is established 

with the help of the software OPC Server Ethernet from Softing. The data transfer 

between the OPC server and the external hardware PLC is done via a TCP/IP 

connection.  

4.1 Plugin VSPluginPLCConnection 

The plugin VSPluginPLCConnection is the master plugin, which manages the creation 

and configuration of various connectors to connect to the external PLCs. The plugin is 

developed from the basic idea as represented in the figure 3.6. 

 Figure 4.2 describes the detailed implementation of the plugin 

VSPluginPLCConnection. The plugin contains various classes like, PLCNode, 

Connector, and IOMapping. All the three classes PLCNode, Connector and IOMapping 

are derived from the base class VSD::Node.  
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Figure 4.2: The plugin VSPluginPLCConnection 

The Class PLCNode creates a PLCNode object in the VEROSIM environment. The 

PLCNode can be added into the VEROSIM project from the internal model library which 

contains a diversity of preconfigured components. The PLCNode contains an IO board, 

to which inputs and outputs can be added. The inputs and outputs are then connected by 

the user to the sensors and the actuators in the VEROSIM model. The property widget 

of the PLCNode contains a drop down menu with the list of all available connectors. 

Selecting the desired connector and clicking the button ‘Add’ creates a connector of that 

type. PLCNode has a property list ‘connectors’ which hold the list of connectors created 

by the user. Figure 4.3 (a) shows the property widget of the PLCNode and figure 4.3 (b) 

shows the PLCNode with two connectors added. More than one connector can be 

configured in the PLCNode. However, at any given time only one of the connectors can 

be used to connect to the external PLC. The property ‘currentConnector’ holds the 

connector which is used to connect to the external PLC at a given time. The 

‘currentConnector’ can be changed by selecting the desired connector from the list of 

available connectors and dragging and dropping it on to the property ‘currentConnector’.  
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Figure 4.3: Creating connectors in a PLCNode 

The class Connector is the base class from which different type of connector classes are 

derived. Two classes are derived from the Connector class. The class ConnectorPLCSim 

represents a connector of type ConnectorPLCSim with an extension “ExtensionPLCSim” 

to connect to the external simulated PLC S7-PLCSIM. An IO board in the 

ConnectorPLCSim with inputs and outputs enables the exchange of data between the 

ConnectorPLCSim and the simulated PLC S7-PLCSim. The number and type of inputs 
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and outputs on the ConnectorPLCSim’s IO board should be equal to that in the PLC 

program downloaded onto the S7-PLCSim in order to establish a successful connection 

between the two. In addition to the number and type of inputs and outputs, the order of 

the inputs and outputs organized in the PLCNode’s IO board should match the order of 

the inputs and outputs defined in the S7-PLCSim program. In case if the inputs and 

outputs are not organized in the same order, the mapping of inputs and outputs will be 

inconsistent and the simulation model might not function as intended. 

The class ConnectorOPC is also derived from the base class Connector. It represents an 

OPC connector with an OPCClient node which connects to the external hardware PLC 

via an OPC server. An IO board in the OPCClient node enables the exchange of data 

between ConnectorOPC and the OPC Server. The OPC Server is connected to the 

hardware PLC S7-300 via a TCP/IP connection. The process data from the OPC server 

is made available by means of OPCItem objects. All the inputs and outputs of OPCClient 

node include an extension OPCItem, as each process variable (input/output) on an OPC 

client is of type OPCItem. Each of the inputs and outputs is mapped to one of the 

OPCItems offered by the OPC server, via a drop down menu in the property widget. A 

group of OPCItems accessed by the OPC client are organized into an OPCGroup. The 

IO board of the OPCClient node has an extension “OPCGroup” which groups all the 

OPCItems accessed by the OPCClient node. 

The PLCNode and the connectors, ConnectorPLCSim and ConnectorOPC, each have 

distinct IO boards. The PLCNode IO board connects to the sensors and actuators in the 

VEROSIM model while the IO boards in the Connectors ConnectorPLCSim and 

ConnectorOPC, enables the exchange of data between the connectors and the external 

simulated and hardware PLC respectively. For the simulation model to work with the 

external PLCs a mapping of inputs and outputs of the PLCNode IO board to the inputs 

and outputs of the IO board of the connectors is required. 

The Class IOMapping is responsible for the mapping of the inputs and outputs of the 

PLCNode to the inputs and outputs of the configured connectors. Two separate classes 

IOMappingInput and IOMappingOutput are derived from the class IOMapping to map 

the inputs and outputs respectively. The class IOMapping is derived from the VEROSIM 

base class VSS::TaskStep that executes the IOMapping function every simulation cycle. 
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Thus the mapping of inputs and outputs of the PLCNode and the connector is done every 

simulation cycle.  

The class IOMappingInput, derived from the base class IOMapping, maps the 

sourceInput to the targetInput.  As seen from figure 4.4, the sourceInput is an input from 

the PLCNode’s IO board and the targetInput is an input from the connector’s IO board. 

The class IOMappingOutput, also derived from the base class IOMapping, maps the 

sourceOutput to the targetOutput. The sourceOutput is an output from the connector’s 

IO board and the targetOutput is an output from the PLCNode’s IO board.    

 

Figure 4.4: Implementation of the class IOMapping 

 IO maps created for each of the inputs and outputs are stored as a list in the property 

‘nodesIOMapping’ of the connector object. Thus each connector configured will have a 

list of IO mappings in the property ‘nodesIOMapping’. After adding the inputs and 

outputs to the IO boards of PLCNode and the connector, IO maps can be created by 

clicking on the button ‘Create IO mappings’ as shown in the figure 4.5. Since more than 

one connector can be configured by the user, not all the connector’s IO maps should be 

active at the same time. To solve this problem, each of the connectors checks for property 

‘currentConnector’ of its parent PLCNode. The IO maps of the connector are made active 

only if the connector is selected to be the ‘currentConnector’, else the IO maps of the 

connector are inactive.  
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Figure 4.5: Creating IO maps 

In case of the ConnectorPLCSim, the exchange of data between ConnectorPLCSim and 

the simulated PLC S7-300 is dependent on the order of the inputs and outputs. This 

dependency is used when automatically creating the IO maps between the 

ConnectorPLCSim and PLCNode. Provided the number of inputs and outputs in the two 

IO boards of the ConnectorPLCSim and PLCNode are equal, clicking the ‘Create IO 

Mappings’ button on the property widget of the ConnectorPLCSim automatically creates 

the IO mappings for the inputs and the outputs.  

As each of the inputs and outputs in the ConnectorOPC’s IO board are mapped to the 

OPCItem provided by the OPC server by selecting the OPCItem, the IO mapping 

between the ConnectorOPC and PLCNode is not done automatically. However for the 

user’s convenience, IO maps (IOMappingInput and IOMappingOutput) are created 

depending on the number of inputs and outputs in the PLCNode’s IO board on clicking 

the button ‘Create IO Mappings’. In case of the IO maps for inputs, the IOMappingInput 
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objects are created with the sourceInputs automatically filled. The IO maps for outputs, 

IOMappingOutput are created with the targetOutputs automatically filled. Adding the 

targetInputs and the sourceOutputs has to be done manually by the user. 

4.2 Plugin VSPluginPLCSim 

The plugin VSPluginPLCSim creates the connection to the external simulated PLC S7-

PLCSIM via the COM object S7ProSim. By adding a reference to the S7ProSim COM 

object, the methods provided by this object can be used to get programmatic access to 

the S7-PLCSIM. The communication sequence between the VSPluginPLCSim and S7-

PLCSIM via the S7ProSim COM object is shown in figure 4.6. 

 

Figure 4.6: Communication with S7-PLCSIM 

 The method ‘Connect’ connects S7ProSim COM object to the first instance of S7-

PLCSIM which has the instance number 1.  

 The method ‘BeginScanNotify’ registers S7ProSim for callbacks from the controller.  

 The input values from the connector object in the VEROSIM environment are copied 

to a local variable. 
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 The method ‘WriteInputImage’ writes PLCSim connector’s input values to the 

peripheral inputs of the S7-PLCSIM. 

  The method ‘ReadOutputImage’ is used to read the elements from the peripheral 

outputs of S7-PLCSIM.  

 These output values are written back to the outputs of the PLCSim connector in the 

VEROSIM environment.  

 The method ‘EndScanNotify’ unregisters S7Prosim for the call backs from the 

controller. The events ScanFinished and PLCSimStateChanged are no longer sent.  

4.3 Plugin VSPluginOPCClient 

The plugin VSPluginOPCClient is able to create an OPCClient object and connect to the 

OPC server. The OPC server fetches the data from the external hardware PLC S7-300 

via a TCP/IP connection. Figure 4.7 shows the configuration and working of the plugin 

VSPluginOPCClient. 
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Figure 4.7: Communication with S7-300 via OPC client-server 

The communication of the OPC Client object in the ConnectorOPC with the external 

hardware PLC S7-300 is done in two steps: configuration and simulation.  

In the configuration step, the OPCClient object is connected with the available OPC 

server i.e. INAT TCPIPH1 OPC Server from Softing. After connecting to the OPC server, 

an OPCGroup is created in the OPCClient node. The OPCGroup holds the list of 

variables accessed from the OPC server. OPCItems accessed by the OCClient are then 

added into the OPCGroup.  

The simulation step includes the process of data exchange between the OPC client and 

server. The input values at the OPCClient nodes IO board are read and if there is any 
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change in the input variables they are written to the OPC server. This process is repeated 

cyclically. The communication of data from the OPC server to the VEROSIM model is 

asynchronous in nature. The outputs from the OPC server are asynchronously read by 

the outputs of the VEROSIM OPCClient node.  
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5 Validation 

The operation of the controller object created in the VEROSIM environment is validated 

with the help of a mechatronic model. This chapter describes the development of the 

simulation model in VEROSIM and the PLC program which controls the behavior of the 

model. Further, the process of creating the PLC object in the VEROSIM environment, 

and configuring different connectors to connect to the external simulated and hardware 

PLC is illustrated.   

5.1 Simulation Model 

Figure 5.1 shows the simulation model developed in VEROSIM. This is a mechatronic 

model where the work-piece is placed on a work-piece carrier and moved between two 

stations, station 1 and station 2 by a conveyor belt arrangement. At station 1 a robot arm 

grips the work-piece and rotates it by 180 degrees. At station 2 the work-piece waits for 

3 seconds.  

The CAD data for the simulation model is imported into the VEROSIM environment and 

mechanisms for the conveyor belts, work-piece and the robot arm are added. The 

‘Start/Stop’ button turns on the conveyor belts. Two light barrier sensors are used to 

detect the arrival of the work-piece carrier at the two stations. Four positions for the robot 

arm are defined in order to perform the rotation action. The four robot arm positions 

include two translation positions namely T_Pose0 and T_Pose1 and, two rotational 

positions namely R_Pose0 and R_Pose1. A ‘simple robot controller’ from the VEROSIM 

model library moves the robot arm from one position to the other. The movement 

sequence of the robot arm is controlled by the PLC program. Each position of the robot 

arm has an input, when triggered the simple robot controller moves the robot arm to that 

position. As the robot arm reaches the desired position, an output signal ‘reached’ is 

generated. Thus for all the four robot positions the input signals are set by the PLC and 

the output signals are sent to the PLC as an acknowledgement. The waiting time for the 

work-piece at station 2 is monitored by a timer in the PLC program.  
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Figure 5.1: VEROSIM model 

Working of the 3D model: 

1 Pressing the ‘Start/Stop’ button on the model, starts the conveyor belts. 

2 When the object reaches the station 1 the conveyor belts are stopped and the robot 

at station 1 grips the work-piece and rotates it by 180 degrees and places it back on 

the work-piece carrier.  

3 The conveyor belts are then started. 

4 When the work-piece carrier reaches the station 2, the conveyor belts are stopped for 

3 seconds and started again.  

5 Back to step 2 or pressing the ‘Start/Stop’ button stops the operation of the model. 
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The operation of the model is controlled by PLC programs. The inputs from the model 

are connected to the inputs of the PLC. The PLC generates appropriate output signals 

depending on the user program stored in the PLC memory. The outputs of the PLC are 

connected to the actuators in the VEROSIM model. Thus, before writing the PLC 

programs for the model, a list of inputs and outputs used by the PLC has to be defined.  

Output Description 

Start_Conveyor Start the conveyor belts 

T_Pose0_input Input signal for T_Pose0 

T_Pose1_input Input signal for T_Pose1 

R_Pose0_input Input signal for R_Pose0 

R_Pose1_input Input signal for R_Pose1 

Grip Grip the work-piece 

Release_Gripper Release the gripper  

Table 5.1: List of inputs from the VEROSIM model 

Input Description 

Start Signal generated on pressing the Start/Stop 

button 

Station1_reached Work-piece carrier reached station 1 

Station2_reached Work-piece carrier reached station 2 

T_Pose0_reached Robot arm reached the position T_Pose0 

T_Pose1_reached Robot arm reached the position T_Pose1 

R_Pose0_reached Robot arm reached the position R_Pose0 

R_Pose1_reached Robot arm reached the position R_Pose1 

ObjectGripped Object gripped by the robot 

Table 5.2: List of outputs from the VEROSIM model 
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5.2 PLC Programming 

The SIMATIC Step 7 software from Siemens is used for writing the PLC programs. A 

sequential control system is developed using the S7-Graph package of the STEP 7 

software. The list of inputs and outputs created for the controller object in the simulation 

model serves as inputs and outputs for the external PLC as well.  

The working of the simulation model is described by a S7-Graph in the form of a 

sequencer. A sequencer represents a sequence of single steps and conditions that control 

how the process moves on to the next step. Before creating the program for the sequencer, 

the structure of the sequencer is specified by breaking down the working of the model 

into single steps as shown in figure 5.2. The structure of the sequencer is specified by the 

following the steps:  

1 The working of the simulation model is broken down into steps and the order of the 

steps is specified. 

2 For each step, the actions that must be performed in that step are specified.  

3 Then for every step, the conditions are decided that must be met so that the process 

can move on to the next step.  
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Figure 5.2: Structure of sequencer for the PLC program to control the model 

Once the structure of the sequencer is developed, a new project is created in SIMATIC 

manager. In the new project hardware configuration for the PLC is done to be able to 

download the programs developed to the PLCs. 

Since a rack type PLC is used, the hardware configuration begins with adding a rack. In 

the first slot a power supply module is added. A CPU is added in the second slot, 

following the CPU input and output modules are added. Lastly, a communication module 

is added for downloading the programs to the PLCs.  

For the simulated PLC, hardware configuration is not a critical part of the project. The 

configuration of the project for simulated PLC includes a standard rack, CPU315-2 

PN/DP(1) and a digital input/output module (DI8/DO8xDC24V/0.5A). No 

communication model is added in the hardware configuration for PLCSIM. 

Downloading the programs to the simulated PLC S7-PLCSIM is via MPI connection. 

Figure 5.3 shows the hardware configuration for using S7-PLCSIM. 
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Figure 5.3: Hardware configuration for S7-PLCSIM 

In case of the hardware PLC, the hardware configuration is a crucial part of the project. 

The types of hardware components added in the hardware configuration should exactly 

be same as the actual hardware. The hardware configuration of the project for the real 

PLC is as follows: standard rack, power supply (order number), CPU – 314-2 PN/DP (), 

input/output module (order number) and a communication module cp-343 advanced. 

Figure 5.4 shows the hardware configuration for the PLC S7-300.  
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Figure 5.4: Hardware configuration for PLC S7-300 

While programming in STEP 7, the I/O signals, memory bits, counters, timers, data 

blocks and function blocks can all be accessed by means of absolute addressing. However 

it is easier to read and write the program if symbols are used instead of absolute 

addressing. Using the ‘Symbol table’ name, absolute address, data type and comment 

can be added for every address used. All the inputs and outputs listed earlier are defined 

in the symbol table as shown in figure 5.5. 
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Figure 5.5: Symbol table 

A S7-Graph function block (FB) is created in ‘Blocks’ folder in the SIMATIC manager. 

In this FB the program for the sequencer is entered according to the sequencer design as 

shown in figure 5.2. The sequential control program for the simulation model is called 

and started in organization block ‘OB1’. The OB1 is created in the ladder logic (LAD) 

language. All the blocks in the ‘Blocks’ folder are downloaded to the PLC. Figure 5.6 

shows the project created in SIMATIC Manager. The sequencer is implemented in the 

function block FB5 and it is called from the organization block OB1.  

Inputs 

Outputs 
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Figure 5.6: Project in SIMATIC Manager 

5.3 Creating the Controller Object in VEROSIM Project 

As the simulation model and the PLC programs are both implemented, the next task is to 

integrate the external PLC containing the control program with the simulation model. 

The controller object developed in VEROSIM helps in establishing the communication 

with the external PLC. The controller object named ‘PLCNode’ is added to the 

VEROSIM project from the VEROSIM model library. As 8 input and output signals are 

defined for the simulation model, 8 digital inputs and outputs are added to the IO board 

of PLCNode.  

The VEROSIM IO editor is used to make the connections to the PLCNode from the 

sensors and actuators in the simulation model. Referring to the lists of inputs and outputs 

created in chapter 5.1, inputs and outputs from the simulation model are connected to the 

corresponding inputs and outputs of the PLCNode.  

Function block 
containing the 
program 

Organization 
block which 
calls FB5 
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Connectors to connect to different types of external PLC are created in the PLCNode by 

selecting the type of connector and clicking the ‘Add’ button from the property widget 

of the PLCNode. A ConnectorPLCSim is created to connect to the S7-PLCSIM and a 

ConnectorOPC is created to connect to the PLC S7-300. 

Configuring the ConnectorPLCSim: 

The ConnectorPLCSim is created with an ‘ExtensionPLCSim’ which facilitates the 

communication with the external simulated PLC S7-PLCSIM. The ConnectorPLCSim 

requires an IO board with inputs and outputs for the communication. The 

ConnectorPLCSim is configured in the following manner: 

 An IO board is added in the extensions of the ConnectorPLCSim.  

 Similar to the PLCNode’s IO board 8 digital inputs and outputs are added to the 

ConnectorPLCSim’s IO board. 

 Clicking the ‘Create IO Mappings’ button on the ConnectorPLCSim’s property 

widget creates a list of IOMappingInput and IOMappingOutput for inputs and 

outputs in the property nodesIOMapping. As the source and the target inputs and 

outputs are added automatically, the index of the inputs and outputs at the PLCNode 

IO board should be similar to the index of the inputs and outputs at the 

ConnectorPLCSim IO board.  

Figure 5.7 shows the configured ConnectorPLCSim. The IO board of PLCNode consists 

of 8 digital inputs and 8 digital outputs, thus 8 IOMappingInput and 8 IOMappingOutput 

are created in the property ‘nodesIOMapping’. The sourceInput refers to the input on the 

PLCNode IO board and the targetInput refers to the input on the ConnectorPLCSim IO 

board.  
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Figure 5.7: Configured ConnectorPLCSim 
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Configuring the ConnectorOPC: 

An OPCClient object is created in the ConnectorOPC For communication with the 

external hardware PLC S7-300, the ConnectorOPC requires an IO board with inputs and 

outputs for the communication. The ConnectorOPC is configured in the following 

manner:  

 An IO board with an extension OPCGroup is added in the OPCClient object of the 

ConnectorOPC.  

 The OPCItems of interest are added into the OPCGroup as inputs and outputs. The 

OPCItems includes the inputs and outputs from the IO list created in chapter 5.1 and 

any other additional process variable if required.  

 Clicking the ‘Map IOs’ button from the ConnectorOPC’s property widget creates the 

IO maps. The number of IOMappingInput and IOMappingOutput created 

corresponds to the number of inputs and outputs in the PLCNode IO board. In case 

of ConnectorOPC the created IO maps are not complete. The inputs of the PLCNode 

IO board are added as the sourceInput in the IOMappingInput, and the outputs of the 

PLCNode IO board are added as the targetOutput in the IOMappingOutput 

automatically.  

 The targetInputs in the IOMappingInput are added to map the inputs of the PLCNode 

to the inputs of the OPCClient IO board.  

 The sourceOutput in the IOMappingOutput are added to map the outputs of the 

OPCClient to the outputs of the PLCNode IO board.  

Figure 5.8 shows the configured ConnectorOPC. The IO board of PLCNode consists of 

8 digital inputs and 8 digital outputs, thus 8 IOMappingInput and 8 IOMappingOutput 

are created in the property ‘nodesIOMapping’. The sourceInput refers to the input on the 

PLCNode IO board and the targetInput refers to the input on the ConnectorPLCSim IO 

board. The sourceInput is added automatically and the targerInput is configured by the 

user.  
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Figure 5.8: Configured ConnectorOPC 
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After both the connectors are configured to connect to external PLCs, the working of the 

model is tested with the PLC program on the external PLCs. At first the simulated PLC 

S7-PLCSIM is chosen as the external PLC to control the behavior of the simulation 

model. To connect the simulation model with S7-PLCSIM, the ConnectorPLCSim is 

selected as the CurrentConnector. Starting the simulation, the S7-PLCSIM is set to ‘Run’ 

mode, and the exchange of data between the PLCNode and S7-PLCSIM begins. When 

the simulation is started, the input signals are sent to the Simulated PLC and the program 

on the simulated PLC sends appropriate output signals. This communication of input and 

output signals continue as long as the simulation is running. The model is seen to behave 

as mentioned earlier in this chapter. The simultaneous change in input and output signals 

can be monitored in the S7-PLCSIM simulation window as well as in the PLCNode and 

ConnectorPLCSim IO board in VEROSIM IO editor.  

The PLCNode’s operation is validated by selecting the connection to simulated PLC and 

hardware PLC one at a time. Before starting the simulation, the user must ensure the 

following points are taken care of: 

1 The number and order of inputs and outputs in the PLCNode matches the number 

and order of inputs and outputs defined in the PLC programs for simulated PLC S7-

PLCSIM.  

2 Inputs and outputs of the OPCClient IO board are mapped to the OPCItems served 

by the OPC server.  

3 The targetInput and sourceOutput in the IOMappingInput and IOMappingOutput for 

the ConnectorOPC are assigned appropriately.  

4 PLC programs are downloaded to the simulated and hardware PLC, and the 

hardware PLC S7-300 is set to ‘run’ mode. 

Validation of the connection to external hardware PLC is done by selecting the 

ConnectorOPC as CurrentConnector. Starting the simulation connects the OPCClient in 

the ConnectorOPC to the OPC server. As ConnectorOPC is selected as currentConnector 

the IO maps of the ConnectorOPC are active i.e. the PLCNode IO board is mapped to 

the OPCClient IO board in the ConnectorOPC. The input signals from PLCNode are sent 

to the hardware PLC S7-300 via the OPCClient and OPC server. The program running 

on the S7-300 generates appropriate output signals which are communicated back to the 

PLCNode via OPC server and OPCClient object. On pressing the ‘Start’ button on the 
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screen the model begins the operation and it is seen that the model behaves in an expected 

manner. A test OPC client installed along with the software ‘Softing OPC server 

Ethernet’ can be used to configure the OPCItems of interest for monitoring. When the 

inputs and outputs change the state at the PLCNode, the same change in the state can be 

observed at the corresponding OPCItem in the test OPC Client.  

For validation of the connection to external simulated PLC, the operation of the model 

and the simulation is stopped. The currentConnector is now changed to 

ConnectorPLCSim. Starting the simulation makes the IO maps for the 

ConnectorPLCSim active, i.e. the PLCNode IO board is mapped to the 

ConnectorPLCSim IO board. S7-PLCSIM is set to ‘run’ mode at the start of the 

simulation. The input signals from the PLCNode are sent to the simulated PLC S7-

PLCSIM. The simulated PLC generates output signals by processing the inputs and the 

instructions stored in the program memory of the PLC. On pressing the ‘Start/Stop’ 

button on the screen the model begins the operation and it is seen that the model behaves 

in an expected manner on connecting to S7-PLCSIM as well. When the inputs and 

outputs change the state at the PLCNode, the same change in the state can be observed 

at the S7-PLCSIM simulation window as well.  
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6 Conclusion and Outlook 

The modern day manufacturing industries involve highly automated production lines 

with many complex and interacting systems. Commissioning of these complex systems 

is a time consuming and expensive task. Virtual verification of production lines with the 

help of simulation models prior to actual commissioning helps in reducing the delays and 

additional costs due to errors during actual commissioning.  

Including the behavior of control systems (PLCs) into a simulation environment helps in 

generating more realistic models. These models help in the verification of the complex 

system along with the PLC programs. As external PLCs can reproduce more accurate 

behavior of the control system, a generic concept is developed in this master thesis to 

integrate external PLCs into graphic simulation environment.  

A concept of generic controller object in simulation environment is developed, which 

allows integration of different type of external PLCs into the simulation environment. 

The controller object has inputs and outputs to connect to the sensors and actuators in the 

simulation environment.  

To facilitate the connection to different types of external PLC, the concept of connectors 

is introduced. Each of the connector has inputs and outputs which are mapped to the 

inputs and outputs of the connected external PLC via a communication interface 

respectively. On establishing the connection between the connector and the external 

PLC, the inputs of the connector are written to the inputs of the external PLC. The PLC 

generates appropriate output signal by processing the input signals and the instructions 

stored in the PLC’s memory. The outputs of the connector are read from the output of 

the external PLC via the communication interface.  

The controller object connects to the sensors and actuators in the simulation environment 

and the external PLC exchanges the inputs and outputs with the connector, an IO 

mapping function is responsible for mapping the inputs and outputs of the controller 

object to the inputs and outputs of the connector. This IO mapping function is executed 

every simulation cycle of the simulation software. Thus the input and output variables 

are updated every simulation cycle.  
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Connections to more than one external PLC can be established in a single controller 

object by configuring multiple connectors. However, to avoid the conflicts, connection 

to only one of the external PLCs can be active at a given time. All the configured 

connectors are listed in the controller object and the user can select one of the connectors 

to be active at a given time. The active connector maps its inputs and outputs to the inputs 

and outputs of the controller object, thus connecting the sensors and actuators to the 

external PLC.  

The generic PLC integration concept is implemented using VEROSIM as simulation 

system. A generic controller object is developed in the VEROSIM environment which is 

capable of integrating different external PLCs. 

As a prototype implementation connections to external simulated PLC S7-PLCSIM and 

hardware PLC S7-300 are implemented. This demonstrates the ability of the controller 

object to create connections to more than one external PLC. Two types of connectors can 

be created in the controller object to connect to the simulated and hardware PLC. The 

connection to the simulated PLC is via a COM object and the connection to the hardware 

PLC is via an OPC client-server configuration. A third party OPC software is used to 

configure the OPC server.  

The controller object’s operation is validated with the help of a mechatronic model in 

VEROSIM. Sensor and actuator signals from the simulation model are connected to the 

inputs and outputs of the controller object. The control programs necessary to govern the 

behavior of the mechatronic model are developed using a PLC program development 

tool and downloaded to the external simulated and real PLC.  

Two connectors are configured in the controller object to integrate the external simulated 

and real PLC into the simulation environment. IO maps are created to map the inputs and 

outputs of each of the connector to the controller object. Behavior of the simulation 

model is observed by selecting one of the configured connectors as active at a given time.  

Running the simulation in real-time the behavior of the model is observed. Selecting the 

connector to the simulated PLC as active connector, the model is seen to behave in an 

expected manner. The switching the active connector which connects to the hardware 

PLC, the model was seen to behave in the exact same manner. This demonstrates the 

functioning of the generic controller object in the simulation environment. 
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As a future development a connection to the hardware PLC can be implemented using 

libraries such as ‘libnodave’. This eliminates the requirement of additional OPC client-

server software. Another improvement can be implementation of the IO mapping 

function using the signal-slot mechanism. In this thesis the IO mapping function is 

implemented such that it is executed every simulation cycle of the simulation software. 

Thus the input and output variables are updated every simulation cycle.  Mapping the 

inputs and outputs every simulation cycle becomes redundant if the input and output 

variables are not changing at a greater speed. This redundancy can be overcome by 

implementing the IO mapping function using the signal-slot mechanism. Every change 

in the input or output variable generates a signal. This signal is connected to a slot which 

implements the IO mapping function. The concept of generic PLC integration presented 

in this thesis can be implemented using different graphic simulation system.  
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