

Master Thesis

Development of a Simheuristic Approach for Solving
Realistic Inventory Routing Problems

Lena Pfeilsticker

Matriculation Number: 134001

Course: M.Sc. Logistik

Date of Issue:
28-01-2015

Day of Submission:
14-07-2015

Supervisors:

Prof. Dr.-Ing. Markus Rabe
Prof. Dr. Angel A. Juan Perez

Technical University Dortmund

Faculty of Mechanical Engineering

Department IT in Production and Logistics

http://www.itpl.mb.tu-dortmund.de

Universitat Oberta de Catalunya

Internet Interdisciplinary Institute

Department of Computer Science

http://in3.uoc.edu

II

Abstract

The present thesis introduces a ‘simheuristic’ algorithm, a method combining simulation and

metaheuristics, to solve a variant of realistic Inventory Routing Problems (IRPs). The

combination of problems of transportational and stock-related issues is complex. Authors in this

field focus on certain methodologies with fixed assumptions. This can lead to a restricted

applicability for real-life problems. Aiming at improving the applicability of IRPs, an algorithm

is introduced based on information provided by real-life IRP companies and extracted from

current literature. The goal is to minimize the resulting costs of an IRP system, i.e., the total of

inventory and routing costs.

For this purpose, the IRP systems of real-life companies are investigated for such

constraints with the goal to develop an approach and subsequently an algorithm based on the

result of this investigation and then to implement this algorithm in Java. The model based on the

algorithm considers a single-period IRP consisting of multiple depots, customers with stochastic

demands and a single warehouse, potential stockouts and a central control unit. Additional

constraints are a heterogeneous fleet and multiple products to be distributed. The work finally

presents a set of numerical experiments comparing the proposed method with different refill

strategies.

To attain this goal the present work utilizes a ‘simheuristic’ approach. As initial situation a

stochastic model based on a real-life case is considered, which is then simplified into a

deterministic model. A range of deterministic solutions is generated by using the mean values of

the stochastic input parameters. If the generated solutions are promising, they are evaluated in a

simulation process and ranked in order of the best outcome.

The results of the present work are an identification of characteristics of real-life IRPs,

resulting in a simheuristic approach implemented in Java, which is able to deal with realistic

requirements of these sorts of problems. The algorithm is tested using current related literature

and realistic case studies. A final conclusion of the results is conducted.

Keywords:

Inventory Routing Problem, Metaheuristic, Simulation, Combinatorial Optimization, Real-life

Application, Logistics, Stochastic Problems.

III

Table of Contents

Abstract ... II

Table of Contents .. III

1 Introduction .. 1

2 Theoretical Groundwork for realistic IRPs .. 3

2.1 Overview Vehicle Routing Problems ... 3

2.2 IRPs in the realistic environment of uncertainties .. 4

2.3 Methodology ... 6

2.3.1 Simheuristics ... 6

2.3.2 Biased Randomization ... 8

2.3.3 Multi-Start Approaches ... 9

2.3.4 Round-robin Process ... 12

2.3.5 Clarke and Wright Savings Algorithm .. 13

3 Development ... 15

3.1 Analysis of Requirements ... 15

3.2 Problem Description ... 16

3.3 Proposed Solving Process ... 17

3.3.1 Assignment .. 18

3.3.2 Inventory Planning .. 19

3.3.3 Routing .. 20

3.4 Formal Description ... 21

3.5 Pseudocode ... 23

4 Implementation and Evaluation ... 26

4.1 First Implementation... 26

4.1.1 Solving Process ... 26

4.1.2 Case Study ... 30

4.1.3 Outlook .. 37

4.2 Second Implementation .. 38

4.2.1 Solving Process ... 38

4.2.2 Case Study ... 40

4.2.3 Outlook .. 45

4.3 Final Implementation .. 46

4.3.1 Solving Process ... 46

4.3.2 Case Studies .. 48

4.3.3 Risk Analysis ... 55

4.3.4 Outlook .. 56

IV

5 Technical Description of the Final Code .. 58

5.1 Input .. 58

5.2 Computer Operations .. 61

5.3 Output ... 72

6 Conclusion .. 75

Acknowledgements ... 77

References ... 78

List of Figures .. IV

List of Tables ... VI

List of Abbreviations ... VII

Annex ………………………………………………………………………………….. VIII

1

1 Introduction

The field of logistics, transport and inventory management is object of continuous changes due

to latest research, changing economies and a changing environment for companies to conduct

their business in. In order to stay or become even more cost-efficient and environmentally

friendly, companies have to cooperate along the supply chain for improving the efficiency of

transport and inventory systems. Independent decision-making processes are a common

approach: The partners of a supply chain seek a solution for their own system with the focus on

cost efficiency, not taking into account the other supply chain partners (Fraza 1998, Cooke

1998). If the supply chain were to be considered as a whole, an integrated decision-making

could lead to significant decreases in total costs and operation durations (Goel and Gruhn 2005

and 2008). An approach to this problem implemented in many systems is Vendor Managed

Inventory (VMI), often used e.g., in the retail industry (Waller et al. 1999). A centralized

control unit of a supplier with access to the inventory levels and demand of a company is fully

in charge of the replenishment. Thus, the supplier can fully adjust transportation and inventory

levels and provide more efficient services, compared to the two processes being considered

separately. The general problem of integrating inventory and transportation (vehicle routing)

decisions is called an inventory routing problem (IRP) (Campbell et al. 1998). The majority of

authors dealing with a problem in this research area either address the inventory problem or the

transportation problem. Less published works deal with the integrated decision-making of

inventory and transportation (Golden et al. 2008). This is due to the fact that the necessary

procedures and models to obtain a solution to such a problem are very complex and can take a

long time to process. Considering the reality of supply chain systems and real-life IRP

applications, it is necessary to conduct research by considering the whole logistical system to

find optimized solutions for minimal cost and highest efficiency. A significant progress in this

research field has already been reported by Juan et al. (2014a). The authors propose an approach

combining simulation and metaheuristic to a so-called ‘simheuristic’, leading to solutions which

are improving known solutions to IRPs. In the present work an approach is developed that aims

at a better applicability to realistic rich IRPs.

The general objective of the present work is to develop a simheuristic approach for solving

a rich IRP by including uncertainties and realistic constraints extracted from information in

literature and provided by companies, while minimizing the overall costs. The main challenge

and another goal is to find a way to include these realistic problems in the approach, considering

that the problems can vary widely and that information provided by companies and extracted

from current literature might be very little, incomplete or not relevant for the present work.

By using the simheuristic approach it is possible to quantify the distribution of risks related

to stochastic customer demands when pre-defined refill strategies are applied to the suppliers’

inventories. The objective is to produce an evaluation of risks connected to different stochastic

scenarios in customer demand.

2

 Ultimately, after a verification and validation process, the implemented algorithm should

be able to use real-life data to solve specific IRPs.

The structure of the present work is as follows: After an introductory part, the

characteristics of real-life IRPs are extracted from current literature and from information

provided by several companies. Following this, the information is translated into requirements

for the formulation of the approach used for the treated IRP. A specific problem description is

given and a solving process proposed, explaining how the IRP benefits from the simheuristic

approach. Afterwards a pseudocode is created, containing the description of all necessary steps,

inputs and outputs. Subsequently, an algorithm based on the developed approach is

implemented in Java in several steps. The intermediate results and the final code are verified

and validated in various tests. Concluding the chapter, a risk analysis is conducted to

demonstrate the costs resulting from different refill policies and different fluctuations in

customer demands. Then an exact description of the final code is given and its functionalities

are explained. Finally, a conclusion is completed to discuss the results.

3

2 Theoretical Groundwork for realistic IRPs

In this chapter a comprehensive literature research is given with the aim of introducing the

subject of vehicle routing problems (VRPs) and especially IRPs. Ensuing this, the methods

applied in the present work are introduced and explained.

2.1 Overview Vehicle Routing Problems

IRPs have been developed as a separate form of VRPs for several decades until now. The

requirement for extended research on VRPs was launched by companies’ needs for more

applicable models of their realistic systems which led to the research area of IRPs (Coelho et al.

2014). In general the solving of a VRP includes optimizing a routing system, without violating

given constraints, while satisfying all of the customers’ demands. The objective function is to

minimize the overall costs (Toth and Vigo 2002). IRPs were usually variations of modeled

VRPs, where additional constraints such as inventory costs were taken into consideration

(Coelho et al. 2014). The research field of VRPs was first introduced as a generalization of the

travelling salesman problem (TSP) by Dantzig and Ramser (1959). Since then, a lot of variants

have been developed and new branches of VRP research lines were combined to form new

research fields. (Caceres et al. 2014). The main variants of the VRP can be found e.g., in Golden

et al. (2008) or Caceres et al. (2014). The modifications depend on the considered parameters

and constraints. They can vary widely and can be combined to form new problems, either with

interdependencies or without (Caceres et al. 2014). Among the most common variants are the

Capacitated VRP (CVRP), where each customer has a demand for a product and vehicles have

finite capacity; the VRP with Time Windows (VRPTW), where each customer must be visited

during a specific time frame; the VRP with Pick-up and Delivery (PDP), where goods have to

be picked-up and delivered in specific amounts at the customers; and the Heterogeneous fleet

VRP (HVRP), where vehicles have different capacities. (Pillac et al. 2013)

Even though VRPs have been studied for decades, the research around this problem type is

extended constantly. One of the latest approaches is increasingly, to include real-life problems

or attempt to solve more realistic types of VRPs by combining multiple constraints. This led to

considering specific combinations of real-life constraints and to Rich VRPs (RVRPs). This type

of problems deals with realistic optimization functions, uncertainties and dynamism of inputs

while including a variety of real-life constraints. (Caceres et al. 2014) Following this, IRPs can

be seen as a type of RVRPs.

In most current research the definition of RVRPs is not clear since there is no formal

definition or criterion which identifies a problem clearly as such (Lahyani et al. 2015). A first

attempt to define the RVRP was made by Toth and Vigo (2002). The authors define the

potential of extending the “vehicle flow formulations, particularly the more flexible three-index

ones.” Lahyani et al. (2015) propose the following definition: “A RVRP extends the academic

variants of the VRP in the different decision levels, by considering additional strategic and

4

tactical aspects in the distribution system (4 or more) and including several daily restrictions

related to the Problem Physical Characteristics (6 or more) [pure routing or operational].

Therefore, a RVRP is either a VRP that incorporates many strategic and tactical aspects and/or a

VRP that reflects the complexities of the real-life context by various challenges revealed daily.”

Authors like in Lahyani et al. (2015) attempt to provide a generic taxonomy for the RVRP

literature and a clear definition. After reviewing numerous current research works, they state a

RVRP as an extension “of the VRP in the different decision levels by considering at least four

strategic and tactical aspects in the distribution system and including at least six different daily

restrictions related to the physical characteristics. When a VRP is mainly defined through

strategic and tactical aspects, at least five of them are present in a RVRP. When a VRP is

mainly defined through physical characteristics, at least nine of them are present in a RVRP.”

Physical characteristics include restrictions like transport weight, number and type of

vehicles, travelled distances, number and type of products etc. Strategic and tactical aspects

include e.g., the transportation strategy, number of depots used or visit frequencies of

customers.

Authors like Caceres et al. (2014) refer to RVRPs reflecting “as a model, most of the

relevant attributes of real-life vehicle-routing distribution systems. These attributes might

include dynamism, stochastic, heterogeneity, multi-periodicity, integration with other related

activities (e.g., vehicle packing, inventory management, etc.), diversity of users and policies,

legal and contractual issues, environmental issues, and more. Thus, as a model, an RVRP is an

accurate representation of a real-life distribution system and, therefore, the solutions obtained

for the RVRP should be directly applicable to a real-life scenario.”

To conclude: the presented authors include numerous characteristics and constraints in the

definition of RVRPs in order to ascertain a certain level of complexity (and uncertainties). This

pattern can be applied to IRPs as well, being a type of RVRP. In the next chapter the research

field of IRPs is introduced

2.2 IRPs in the realistic environment of uncertainties

The IRP in current literature is commonly described as a problem “integrating inventory

management, vehicle routing and delivery scheduling decisions” (Coelho et al. 2014).

Companies involved in this problem type have to make simultaneous decisions about when to

serve a customer, how much to deliver to this customer when served and how to combine

customers into vehicle routes. When it comes to solving IRPs, a lot of different approaches have

been developed.

Several studies have combined simulation and optimization approaches to find solutions to

complex optimization problems (Augerat et al. 1998, Andradóttir 2006, Anily and Federgruen

1993). The supply chain process has been a popular target for this type of technique. Various

works focus on channel coordination (Eskandari et al. 2010), scheduling problems (Angelidis et

al. 2012) or inventory problems (Alizadeh et al. 2011) using simulation-optimization modeling.

In the past years, several approaches have been proposed for different variants of the Inventory

Routing Problem.

5

The main factors to take into account when classifying the different works are

(a) whether they consider deterministic or stochastic demands;

(b) whether they consider single or multiple periods (including an infinite horizon);

(c) whether they allow inventory shortages or not;

(d) whether they consider single or multiple products;

(e) whether they use the same refill policy for all nodes or specific replenishment policies

for each node; and

(f) whether they use exact or approximate methods to solve the problem.

The following literature review is divided according to the first – and probably most relevant –

criteria, i.e., whether the demands are considered to have a deterministic or a stochastic nature.

The IRP with deterministic demands

Regarding the IRP with deterministic demands, various modeling and solution approaches have

been proposed, the majority of which are summarized in Bertazzi et al. (2008). Some use

integer or dynamic programming approaches, e.g., Chien et al.(1989), Campbell et al. (2002),

and Campbell et al. (1998), while others utilize a heuristic or metaheuristic approach, e.g., Anily

and Federgruen (1990) and Bramel and Simchi-Levi (1995). Other sequential approaches

include Campbell and Savelsbergh (2004a) who present a two-phase approach including support

of GRASP-like randomization ‘as a powerful tool to improve the performance of insertion

heuristics’. Campbell and Savelsbergh (2004b) and Campbell and Savelsbergh (2004c) consider

extensions. Mjirda et al. (2014) propose a two-phase Variable Neighborhood Search

metaheuristic to solve a multi-product IRP with deterministic demands over a finite planning

horizon.

The IRP with stochastic demands

One of the first works on the IRP with stochastic demands is Federgruen and Zipkin (1984). The

authors adress the single-period combined problem of ‘‘allocating a scarce resource available at

some central depot among several locations, each experiencing a random demand pattern, and

planning deliveries using a fleet of vehicles’’. Trudeau and Dror (1992) address a multi-period

version of the IRP with stochastic demands in which stockouts are also allowed. Godfrey and

Powell (2002) describe an adaptive dynamic programming algorithm with stochastic inputs and

a single-period setting. Barnes-Schuster and Bassok (1997) address an infinite-horizon scenario

in which demands are stochastic. Jaillet et al. (2002) solve an IRP in a rolling horizon

framework with stochastic demands and allow for inventory shortages. Reiman et al. (1999)

consider an IRP with stochastic demands and one vehicle covering a region composed of

several customers comparing three strategies. Gaur and Fisher (2004) describe a similar

application with stochastic demands and a heterogeneous fleet. In Yu et al. (2006), the authors

analyze the multi-period stochastic IRP with split delivery, aiming at transforming the stochastic

model into a deterministic one. Juan et al. (2014a) use an individual policy for each retail center

in their single-period IRP with stochastic inputs. They solve a single-period IRP with a

homogeneous fleet, one depot and possible stockouts by applying an approach combining

simulation and metaheuristic.

6

2.3 Methodology

When dealing with a problem type like VRPs, particularly IRPs as a specific case, the

methodology has to fulfill a set of demands to be able to be successfully applied.

Caceres et al. (2014) propose a classification based on the level of complexity and

uncertainties. It is displayed in Figure 1.

Figure 1 Classification of Applicable Methodologies (based on Caceres et al. 2014)

The classification shows a need for increasing flexibility of the applied methodologies when the

level of complexity increases. While classical VRPs can be solved with exact methods in

reasonable computing times, the number of approximate solving parts of methodologies has to

increase when more constraints are added to a type of VRP. Since with an increasing number of

combinatorial elements, the problem size increases exponentially (Juan et al. 2010a), exact

methods have too extensive computing times. Also, since this kind of problem is typically NP-

hard, the use of exact algorithms is limited and metaheuristic concepts are advantageous

(Schmid et al. 2013).

Several studies have combined simulation and optimization approaches to find solutions to

complex optimization problems (van Dijk and van der Sluis 2008, Laroque et al. 2012,

Gonzalez et al. 2012). This approach is adapted and extended in the present work.

In the following chapter the methods applied to the here treated IRP are explained.

2.3.1 Simheuristics

The methodology of the present work consists mainly of two combined approaches: simulation

and metaheuristics. Linked together they form a new methodology called ‘simheuristics (Juan et

al. 2015).

In the present work the solving process for the given problem is embedded in a simheuristic

framework. It is able to build an interface between real-life stochastic IRPs and deterministic

7

methods commonly used for complex problems in this research area (van Dijk and van der Sluis

2008). Simheuristics are optimization-driven evaluation functions used for NP-hard,

combinatorial optimization problems (COPs). They use simulation to obtain good feasible

solutions in reasonable computing times. (Juan et al. 2015)

Metaheuristics are a class of solution methods using approximate optimization techniques

for solving complex problems in various research fields. Metaheuristic models can be optimized

and implemented into algorithms, which makes them easily applicable to many different kinds

of optimization problems. They are part of heuristic algorithms but are not problem-specific and

thus can be varied and adapted to different specific scenarios. Metaheuristics provide acceptable

solutions in a reasonable computing time when solving complex problems. (Talbi 2009)

Simulation approaches enable to model and study complex systems with various impacts by

varying input parameters and processes. Simulation models have underlying assumptions and

solve problems with the help of stochastic elements in ‘appropriate’ computing times. They are

models of real-life systems and thus can be used to test existing systems or systems in

development without risks. (Juan et al. 2015)

Realistic IRPs are a type of problem with a high level of complexity and, when combined

with stochastic values, with a high number of uncertainties. When solving complex logistical

problems, exact solutions take long computing times (Juan et al. 2014a) due to many elements

with several characteristics which have to be combined to find a feasible solution. Adding an

element can lead to a significant rise in possible combinations and thus the problem size to

solve is increasing exponentially (Juan et al. 2010a). Therefore, for this problem type, a

heuristic approach is sufficient to achieve an approximate solution in a much smaller time

frame. Heuristics are applied to find near-optimal solutions. When dealing with realistic

problems, solutions need to be found in a reasonable time so they can be applied.

When dealing with heuristic approaches, there is no optimal solution or solving process. In

order to find reasonably good and feasible solutions, different combinations of elements have to

be tried out and existing solutions need to be improved. One way of doing this efficiently is

simulation. It enables to test different scenarios and calculate approximate costs and operation

times.

When applying the simheuristic, a stochastic model of a real-life IRP is constructed with

several constraints. It is converted into a deterministic model by using the expected mean values

of the single input parameters. The deterministic problem is solved using a heuristic approach

and the solution is tested for feasibility. In a fast simulation process with a low number of

replications the promising solutions are evaluated by using stochastic parameters, leading to a

stochastic solution to the COP. The generated solutions are ranked according to their best

outcome and the best results are again tested for their feasibility and quality in an intensive

simulation process with a large number of replications to determine the best solution (Juan et al.

2015). The final results are feasible solutions with the best outcome of the system in a given

maximal computation time. This process is displayed in Figure 2.

8

Figure 2 Simheuristic Approach (based on Juan et al. 2015)

During the process of fast simulation, the best computed solutions are saved in a cache. When

the iterative process of finding solutions is repeated, the new computed solutions are compared

to the already computed best solutions in the cache. If the solutions in the cache are worse, the

newly computed solution replaces the worst solution in the cache. This way, promising

solutions are selected over inferior ones. Using this approach does not guarantee finding the

overall best solution for the problem it is applied to. But, it gives a good chance finding

reasonably good solutions in a given maximum time.

The final simulations hold the possibility of evaluating the quality of each solution and do a

risk analysis showing not only the expected result of the chosen solution but also the

distribution of the alternative solutions involved. Thus the decision makers can evaluate if a

solution with an expected better outcome but higher risk of failure can be less attractive than a

solution with a lower risk but a still satisfying outcome.

As illustrated, the advantage of combining metaheuristics and simulation approaches lies in

providing solutions modeling complex real-life problems with a high flexibility and quality

within reasonable computing times.

2.3.2 Biased Randomization

During several steps of the solving process a biased randomization is applied. This describes the

use of nonsymmetrical probability distributions to generate randomness in heuristics (Juan et al.

2013). It can also be seen as random sampling from non-uniform distributions in a Monte Carlo

simulation.

Heuristics are applied to find near-optimal solutions in an iterative process. During the

application of the heuristic, elements to construct the next movement are chosen from a

previously sorted list. The elements on the priority list are sorted according to a criterion of the

highest advantage for the solution. E.g., for an IRP a list of customers with the closest location

to a depot is computed and the depot gets assigned the customers with the top positions on the

priority list, i.e. the customers with the minimal distance to the depot. However, heuristics are

9

deterministic approaches: using one input will always have the same results. To optimize the

simulation and obtain several solutions from which the best solution can be selected, the

elements of the priority list are combined with biased randomization.

This means, a probability to be selected is matched with every element of the priority list,

generating a stochastic approach. In the following simulation, the order, in which the elements

of the priority list are selected, is different at every step of the iterative solving process and

multiple solutions are obtained. A uniform distribution of the priority list’s elements would

destroy the logic of creating a priority list in the first place. In order to avoid this, a biased

randomization is employed, assigning higher probabilities to be picked to elements with higher

positions on the priority list. This approach has been proven to outperform deterministic

approaches (Juan et al. 2013). The difference between uniform and biased/non-uniform

randomized priority lists is displayed in Figure 3.

Figure 3 Biased Randomization of Priority Lists (based on Juan et al. 2015)

Biased randomization is applicable whenever a new order of given elements needs to be

constructed based on a sortable criterion. The order of the elements can be randomized and thus

new solutions can be computed, based on a logical order. When solving an IRP, a lot of

elements need to be arranged and biased randomization favors the beneficial choices during the

process. Due to this functionality, biased randomization is applied during the solving process

and serves to improve computed solutions.

2.3.3 Multi-Start Approaches

Multi-start (MS) approaches conduct solving processes by applying local search to start from

different initial solutions, initiated by a repeated constructive process. The classical Random

Restart procedure and the more recent GRASP procedure (Festa and Resende 2002) are well-

known examples for MS approaches (Fleurent and Glover 1999).

Heuristic search procedures provide approximate solutions to highly complex problems.

They are based on pre-defined assumptions limiting the search space of solutions. One way to

find the optimal solution in this search space is to calculate global extrema. Usually this type of

heuristic approaches re quires some type of diversification to overcome local optimality. In

Uniform Randomized
Selection

Biased Randomized
Selection

Priority Lists of

Movements

Probabilities of

being selected

Most promising

Elements

Least

promising

Elements

10

literature and research, the most successful approaches have two phases that are alternated for a

certain number of global iterations. During the first phase an initial solution is computed. In the

second phase this solution is improved. Each global iteration produces a solution that is

typically a local optimum, and the best overall solution is the output of the algorithm. The

interaction between the two phases creates a balance between search diversification (structural

variation) and search intensification (improvement), to yield an effective means for generating

high-quality solutions. Following a survey of MS methods for COPs, the authors distinguish

between memory-based and memoryless procedures. (Martí et al. 2013)

The authors in Glover (1977) introduce a framework in which MS search includes local

search to improve the starting solutions. Within this framework, procedures are given for

generating starting values for variables and for generating values perturbed from other starting

points. By varying the rules for the perturbation, these strategies include customary local search

approaches for producing re-starts. A series of extensions of this framework are given in Glover

(1986, 1989, 2000), addressing controlled randomization, learning strategies, induced

decomposition, and adaptive memory processes (as introduced in tabu search). Emphasis is

placed on the interaction between intensification and diversification as an instrument for

creating a more effective search process.

2.3.3.1 Iterative Local Search

Iterated Local Search (ILS)is a special case of a MS approach. Among the metaheuristics for

NP-hard optimization problems, the ILS in current research is seen as one of the effective and

simple approaches to find solutions. It has been successfully applied in many combinatorial

optimization problems. Martin et al. (1992) first introduced the ‘kick’ method, which was later

referred to as iterated local search. Lourenço et al. (2001) presented a beginner’s introduction to

iterated local search. ILS can help the local optimizer escape being trapped in a local minimum

while keeping numerous useful properties of the local minimum. This can make ILS more

efficient and effective than randomly restarting a local search. (Tang und Wang 2006)

During the solving process, an ILS is applied to individual elements. It is used in computer

science as a modification of a local search process when solving optimization problems.

Local search methods are used when a solution in a search space can be found by

determining the extrema of the related mathematical function. The responding algorithm moves

from solution to solution in the search space by applying local changes. This process continues

until a determined termination criterion is met, e.g. elapsed time or surpassing a previously set

value limit. These algorithms are commonly applied to hard computational problems, like the

travelling salesman problem. (Hoos and Stützle 2005)

When calculating extrema of a mathematical function, a local search can get stuck in a local

extremum, where no improving neighbors are available. Lourenço et al. (2002) introduce an

approach modifying the local search by iterating the routine. Each time the process is

repeated, the starting point is varied. This is not to be confused with the usage of a

memory, meaning the knowledge obtained during previous iterations is not used for the

next iterations. It is a repeated local search. The authors define it as follows: “one

iteratively builds a sequence of solutions generated by the embedded heuristic, leading to far

11

better solutions than if one were to use repeated random trials of that heuristic” Lourenço et al.

(2002). They also state that the characteristics of an ILS include “(i) there must be a single

chain that is being followed (this then excludes population-based algorithms); (ii) the search for

better solutions occurs in a reduced space defined by the output of a black-box heuristic.”

When applying the method, the authors state that an ILS explores heuristically a given

search space using “a walk that steps from one solution to a ‘nearby one’, without the constraint

of using only nearest neighbors”. Given a current solution s*, the solution is partially

perturbated which leads to an intermediate state s’ of the solution. Then, a local search is

applied to s’ and a new solution s*’ is determined. All the states and solutions are part of the

search space. If s*’ meets an acceptance criterion, it becomes the next element of the walk in the

search space, otherwise, one returns to s* for searching another new solution. The resulting

walk is a case of a stochastic search in the given search space. This process is shown in Figure

4.

Figure 4 Iterated Local Search Process (based on Lourenco et al. 2002)

Starting with a local minimum s*, a perturbation is applied leading to a solution s’. After a local

search, a new local minimum s*’ is found that may be better than s*.

When applying an ILS, the implicit assumption is that of a clustered distribution of local

minima: when minimizing a function, determining reasonably good local minima is easier when

starting from a local minimum with a low value than when starting from a random point. It is

necessary to avoid getting stuck in a given attraction basin. The distance between two solutions

needs to be big enough to transform the current solution to a reasonable starting point.

The perturbation strength has to be sufficient to lead the trajectory to a different attraction

basin, which leads to a different local optimum. In the optimal case a global optimum is found.

S*

S*‘

S‘

Solution Space

Search value of
objective

function

12

In the present work, an ILS is applied during the process for fixedly assigning customers to

depots from which they are supplied (see chapter 3.3). It serves to explore feasible solutions for

a given problem and finding the best possible option that can be found in a given time frame.

2.3.4 Round-robin Process

A round-robin approach is used to choose elements in a rational order. Usually when it is the

element’s turn, a similar share of resources is allocated to the element. Generally, when

employing a round-robin approach, equal shares of a limited resource are distributed to each

process in a circular order. The processes are not prioritized and no process is cut off of the

available resource. The name of the algorithm comes from the round-robin principle known

from other fields, where each person takes an equal share of something in turn.

In computer science it is employed to allocate limited resources to competing processes,

usually time. The processes are suspended after their allocated time is up. (Silberschatz et al.

2010)

The process is displayed in Figure 5.

Figure 5 Round-robin process

In the present work the round-robin scheduling is used during the assignment of customers to

depots. The authors of Juan et al. (2014b) use this approach with three different variations: “(a)

a round-robin tournament criterion following consecutive turns among depots is used to

guarantee that a different depot selects a new (customer) at a time – as far as it still has enough

capacity to serve the associated demand; (b) the same round-robin criterion, but this time a

depot, is randomly selected at each round for the node-selection turn; and (c) at each round, the

depot with the most (remaining) serving capacity selects the next node from its priority list.”

The authors state that the capacitated round-robin process (c) leads to reasonably good

“balanced” allocation maps of customers to depots as compared to the other proposed

13

possibilities. Due to these results, in the present work a capacitated round-robin approach is

employed.

2.3.5 Clarke and Wright Savings Algorithm

The Savings Algorithm (CWS) was first introduced in 1964 by Clarke and Wright and is today

one of the most practiced approaches for solving routing problems in logistical systems, e.g., the

TSP (Clarke and Wright 1964, Suhl and Taieb 2009). It is a heuristic approach for approximate

solutions in a reasonable time.

The given problem is to find the shortest distance between a starting and an endpoint (called

depot in the following) with nodes (customers) in between or to generate the highest savings

possible. Furthermore, it is necessary to determine the allocation of the customers among routes,

the sequence in which the customers shall be visited on a route, and which vehicle shall cover a

route. The objective is to find a solution which minimizes the total transportation costs. More

constraints are that that every customer is visited exactly once, where the demanded quantities

are supplied and the total demand on every route must be within the vehicle’s capacity.

The algorithm assumes an initial solution where every node is directly connected to the

depot with a route going there and directly back. When implementing the problem, a necessary

presumption is that an unlimited number of vehicles, with sufficient capacities, is provided to

form the routes building the initial solution. Another presumption is a symmetrical distance

matrix.

When solving the algorithm, the determination of the customers being visited on a tour and

the order, in which they are visited, is simultaneous.

In the following, the single steps for the algorithm are described:

1. Each node is connected with the depot with a route directly to and from each

customer.

2. Now, an edge of two customers respectively from/to the depot is detached and the

customers and the depot are reconnected in one route. This is done for all possible

combinations of customers.

3. Now, the savings for the combinations are calculated for all combinations:

�������
= 	��
����	����	���
����	�	
�		���

+ 	��
����	����	���
����	�	
�		���

− 	��
����	��
����	���
�����	�	��		�

4. All saving values are sorted in a descending order.

5. The two nodes with the highest savings value are connected in a new route,

provided both nodes still have one edge with the depot.

6. Step 5 is repeated until only two edges from/to the depot are left.

7. When only two edges from/to the depot exist, the solution is reached. This solution

is feasible, provided that the vehicle’s capacity covering this route is not exceeded

by the customers’ demands on the route.

(Clarke and Wright 1964)

The procedure of generating savings is displayed in Figure 6.

14

Figure 6 Clarke and Wright Savings Algorithm (based on Clarke and Wright 1964)

The first picture shows the initial solution with two customers i and j. In the second picture on

the right, savings have been generated by combining the two customers in one route from and to

the depot.

15

3 Development

3.1 Analysis of Requirements

To determine which constraints are applied to the IRP treated in this work, an analysis of

current literature and on information provided by several companies is conducted. The

characteristics qualified for being chosen as requirements for the treated IRP should not be

completely new to the field but have been considered before in other research, to be sure that an

impact on the IRP exists. It would be optimal if the characteristics were used in

implementations before, to obtain a first idea on how to implement the approach treated here

and to read about the results of previous implementations.

Several authors (see chapter 2.2) choose a low number of characteristics for their IRPs due

to the high complexity of the ensuing solving process. These assumptions do not necessarily

reflect the reality of IRPs in companies or supply chains. Since one goal of the present work is

to solve a realistic IRP, a higher number of characteristics are chosen as requirements and

constraints as long as they do not contradict each other. In order to present a solution to a new

IRP, the requirements are chosen in a combination that is not similar to characteristics in other

authors’ works.

When choosing requirements, it is beneficial when the information provided by companies

and the results from the literature research match. This has the advantages of using literature as

described above and that for some of the characteristics a set of real data is possibly available

which can be used as input to test the developed program.

Finally, characteristics that are already used in Juan et al. (2014a) are included or extended

and applied to the treated IRP here. The constraints and requirements in the IRP of Juan et al.

(2014a) are a single-period, single-product, single-depot, homogeneous fleet, centralized control

unit, possible stockouts, stochastic demands and no time windows for the deliveries. A

comprehensive overview of characteristics of IRPs in current literature is given in chapter 2.2.

Based on this literature research, the main factors, as listed in chapter 2.2, are taken into account

when classifying the different works. The descriptions of realistic IRPs provided by companies

have been analyzed and characteristics applying to IRPs are listed as follows:

• Consideration of multiple periods or single periods (due to a changing range of

customers to be supplied every day)

• Multiple depots

• Warehouses additionally to depots

• Multiple products

• Time windows for deliveries

• Heterogeneous fleet

• Possible stockouts

• Centralized or decentralized control units for stock replenishments

• Stochastic demands

16

After reviewing all proposed characteristics and a special check for the accordance of them in

all considered sources, a combination of several requirements is intended to reflect the reality of

IRPs sufficiently while at the same time being implementable in a code.

Based on the literature review in chapters 2.1 and 2.2 and the analyzed information

provided by real-life companies, the requirements for the treated IRP are set as follows: It is

considered with multiple products, multiple depots, one warehouse, a heterogeneous fleet, a

single period, stochastic demands, a centralized control unit, possible stockouts and without

time windows for the deliveries.

In the following chapter a complete problem description is given.

3.2 Problem Description

In the present work the considered IRP is a single-period, multi-product, multi-depot IRP with a

heterogeneous fleet and stochastic demands. The decision about the refills of the depots is made

by a central control unit. Stockouts are possible. The IRP is stated as follows:

A company supplies four different types of products to their 1,000 customers. Each

customer has deposits for their one or multiple demanded products. The distribution of the four

products is conducted from three depots and one warehouse which has a virtually unlimited

capacity of every product but belongs to another company. There are no safety stocks at the

depots.

Each depot holds an inventory level for every product with defined individual and overall

capacities. These capacities are determined by a set refill policy that is calculated based on the

expected customer demand for every depot.

The vehicles used to distribute the products are based at the depots. The fleet is fixed and

heterogeneous, each vehicle with a fixed total capacity. They have a number of different

compartments to hold different products. However, one compartment cannot hold different

products and must be emptied before being filled with another one. But, every compartment can

be filled with any type of product.

The vehicles are divided in small, medium and large ones. Only the medium and large sized

vehicles are able to refill their compartments at the warehouse. The vehicles driving to the

warehouse must be empty. Each vehicle is assigned to one depot. It is always the point of

departure and return.

The capacities of the vehicles are as follows:

• Small vehicle: 4,000L overall capacity with two compartments (50%/50%)

• Medium vehicle: 9,000L overall capacity with three compartments (20%/35%/45%)

• Large vehicle: 30,000L overall capacity with three compartments (20%/35%/45%)

Each depot has a fixed number of vehicles assigned to it, depending on the amount of products

it has to serve per period.

An exemplary system is displayed in Figure 7

17

Figure 7 Inventory Routing System

The ordered amount of products of each customer is known at the beginning of every period.

However, upon arrival of the vehicle, the customers have the possibility to change their ordered

demand and thus create stochastic demands. This can lead to route failures due to insufficient

amounts of loaded products on the vehicle. If this is the case, a second vehicle has to return to

the customer with the missing number of products.

The cost function for this system consists of three components:

• Set-up costs: each shipment, with loading and unloading products, has associated

fixed costs.

• Transport costs: based on the kilometers traveled and the volume transported.

• Storage costs: the costs of maintaining a sufficient level of inventory while not

storing more than needed to reduce costs. This also includes maintenance and

facility costs.

The goal is to minimize the cost function while satisfying 100% of the customers’ demands in

every period.

In the next section a solving process for this IRP is proposed.

3.3 Proposed Solving Process

To find a solution to the described problem, the proposed solving process is divided into three

steps: assignment, inventory planning and routing. The goal is to find the overall minimum

costs. The process described in this chapter is extended with more details in chapter 4, when the

implementations are described. This is due to the fact that it is not clear to which details

attention needs to be paid to or which details have not been considered yet at this stage. The

implementation of the described problem is an iterative process and can lead to significant

18

changes in the final solving process as opposed to the proposed one. The solving process is a

combination of developed methodologies which are then extended to suit the problem in the

present work.

The inputs for the computation of the solution are as follows: location of deposits, location

of warehouses, location of customers, distribution of random demands, current inventory levels

for every product, possible refill policies, inventory-cost function, routing-cost function, number

of vehicles by type and their associated number of compartments.

3.3.1 Assignment

This step fixedly assigns customers to depots, creating a single-depot IRP for each depot by

considering the depot and its assigned customers as a closed system. First, a priority list of

nodes is generated for every depot. The list is based on marginal savings in distance costs and

considers the maximum capacity of the depots with regard to the combined customer demand

for every product. That means the customers are prioritized when they are closest to a depot in

comparison to all other existing depots and are assigned while the overall capacities of products

in this depot are not exceeded. This is a deterministic approach which only allows one possible

outcome. To obtain multiple solutions for comparison of the best outcome a biased

randomization is introduced to assign customers to depots (see chapter 2.3.2). This approach

assigns higher probabilities to nodes with a better expected outcome without destroying the

basic logic of the heuristic approach.

Then, a first solution is generated using a round-robin process. At each round of the round-

robin process, the depot with the most (remaining) overall serving capacity selects a node from

its generated priority list. This process is displayed in Figure 8.

During this step the capacity constraint for the depot is a soft constraint and can be violated

to a certain extent. The assumption is that the customers can not only be served from the depot

but also from the warehouses with unlimited capacity. This implies that the capacity for every

product, which can be served to the customers from each depot, is determined by the combined

capacities of every vehicle assigned to this particular depot. A vehicle can start its route at one

of the warehouses (first stop), arrive empty and then proceed to deliver products to customers.

This consideration differs from the work of Juan et al. (2014a).

19

Figure 8 Capacitated Round-robin process

After obtaining a first solution, an ILS generates thousands of maps with feasible solutions of

assignment (customers to depot) in a short time. This is done by perturbating the base map in a

construction-destruction process.

The result is a single-depot IRP for each depot. The routing is done separately for every

depot and its assigned customers for each of the generated maps of the assignment step. This

separate consideration of every depot has the advantage that the number of possible

combinations of consecutive customers is decreased. This procedure is based on a splitting

policy. By splitting the multiple-depot IRP into a single-depot IRP the size of the problem

decreases exponentially and thus results in shorter computing times for finding feasible

solutions. (Juan et al. 2010a, Juan et al. 2010b)

3.3.2 Inventory Planning

For each of the depots, different refill policies are tested to determine the inventory levels with

the lowest costs. For this purpose, the accumulated customers’ demands of every depot are

calculated to estimate the overall demand of every product for every depot. This is performed

based on the results from the previous assignment step.

Then the expected inventory costs associated with each combination of depot and refill

policy are calculated, including stockouts. With a basic CWS heuristic the routing costs

resulting from each refill policy are calculated. For this purpose an initial solution is computed

where one vehicle drives directly between one customer and the assigned depot.

The policy with the lowest overall costs is chosen to serve for a computation of an initial

base solution for the routing process which is described as follows.

20

3.3.3 Routing

The last step generates routes from every depot to each of its assigned customers, employing a

biased randomized CWS heuristic. To do this, a first initial solution is necessary (see chapter

2.3.5), which is computed based on the determined refill policy in the previous step. To realize

the implementation process, an unlimited number of the smallest trucks available, is provided to

form routes directly to and from the depots to every customer assigned to it.

Then, the biased randomized CWS heuristic is performed to improve the first solution (Juan

et al. 2010a). While performing the CWS heuristic, the vehicle with the biggest surplus of

overall capacities is chosen first, accounting for its number of different compartments and their

individual capacity as opposed to the customers’ demands. When merging the single routes, the

capacity is checked each time a customer is added to an existing route. If the capacity of the

vehicle is exceeded in any compartment and no other compartment is free, the depot is checked

for an available vehicle with a bigger and sufficient capacity for the proposed route. If available,

the route is rearranged. If not, the route is not rearranged but ends at the depot and a new route

with the depot as a starting point is begun. If the customer’s number of demanded products is

greater than the number of compartments in the biggest available truck, the customer is served

by a minimum of two different trucks. The customer is treated like two separate customers with

the same geographical position. The number of routes starting and ending at one depot is never

greater than the number of vehicles available at this depot.

The CWS heuristic chooses the next nodes based on their highest savings values. These

values are the base of a priority list, which is again randomized. Thus, a different outcome of

routes generates thousands of feasible solutions in short computing times and the best solution

in a defined maximum time (maxTime) can be chosen.

The result of the biased randomized CWS heuristic is improved with the help of a route

cache. As described in chapter 2.3.1 this step is part of the intensive simulation process on elite

solutions. During the implementation, a base solution (baseSol) and a defined number of best

solutions (bestSol) are defined. ‘bestSol’ is part of the route cache. At the beginning, the first

solution, which is used as a base for the biased randomized CWS heuristic in the routing step, is

saved in both.

When the new solutions (newSol) are computed, they are first compared to ‘baseSol’.

‘baseSol’ is replaced if ‘newSol’ has a better result. In a next step ‘newSol’ is compared to the

best solutions in the route cache. If newSol has lower costs than the most expensive solution in

the route cache, the list of best solutions is updated.

After the whole process the solution with the lowest overall costs is returned as ‘bestSol’.

The outputs after the previously explained steps are the overall costs for inventory and routing,

the costs per depot, the routing plan and the refill policy for every depot.

A flowchart of the proposed solving process is displayed in Figure 9.

21

Figure 9 Flowchart of the Solving Process

3.4 Formal Description

The single-period Stochastic IRP considered in this work can formally be described as follows.

It is defined as a complete undirected graph � = (�, �), where � = {� , �! , �"} is the set of map

locations including the depots (� = {1, . . , 	}), customers (�! = {1, . . , �}) and warehouses

(�" = {1, . . , &}) and ' is the set of edges connecting those locations. In the presented IRP, a

number of products (= {1, . . , �} is distributed. Each customer � has a demand)*+ to be

satisfied for each product. Each depot � has to serve several customers for whom the demand

Inputs: location of depots, location of warehouses, location of

customers, demands, current inventory levels for every

product, routing-costs function, number of vehicles by type

and their associated number of compartments

Compute the priority list for each depot

Perform a Biased randomization of the list

Obtain an initial solution by assigning

customers to depots

Generate a randomly sorted list of customers

for sub-map

Do CWS heuristic

Routing done for all sub-

maps?

Extract next sub-map.

Outputs: assignment of customers to depots, the overall

costs and the routing plan for every depot.

Elapsed time < Maximum

time?

No

No

Yes

Yes

22

for each individual product is a random variable)*+ ≥ 0, following a known probability

distribution with ./)*+0 = 	*+ > 0.

Each edge in ' has an associated cost �*2 = �2* >0, usually computed as the distance

between customers � and � (all distances are assumed to be symmetric). For the presented IRP, a

solution is a set of routes, in which each route starts at one depot in � , has an optional first stop

at a warehouse & and connects one or more customers � and ends at the same depot, without

exceeding the capacity of the vehicle. Also, routes that start at one depot and end at another

depot are not allowed. There are no vehicles based at the warehouses.

The number of vehicles based at each depot (M) may be fixed or unlimited. The former

defines a harder problem, since it adds an additional constraint and it is unsure that a feasible

solution exists (Chao et al., 1993). The latter simplifies the modeling and solving of the routing

step in the IRP (see chapter 3.3). However, in a realistic scenario, the number of available

vehicles to satisfy customers’ demands is usually fixed.

The number of vehicles at each depot M is a set of small (34 = {1, . . , �}), medium (35 =
{1, . . , �}) and large vehicles (36 = {1, . . , 7}), each with their own overall capacities 89:>0, and

number of compartments ; = {1, . . , �} with individual capacities	8<.

For each depot 	, both the current inventory level, =*+ ≥ 0, as well as the maximum

allowable inventory level, =>+? >0, are known for every product.

A centralized decision about refill policies for depots’ inventory levels requires the decision

about the amount of refilled product to be made independently of individually optimized

inventory levels. Refill policies are percentages determining the filling level of depots’

inventories. This means the decision about each depot’s refill policy is made to minimize the

amount of demand for every product)*+, each depot 	 holds as inventory and the routing costs

it raises. The inventory cost function is as follows:

�()*+,) = @		λBsDB						if	sDB ≥ 0	
		2�*2							if	sDB < 0 I

λB ≥ 0 represents the cost of holding a unit of product n in stock at the end of the period that is

assumed to be known. sDB represents the surplus at the end of the period for every product, i.e.,

sDB = LDB + K*+ −)*+ for all depots. This calculation assumes that the cost of a stockout of a

vehicle on its roundtrip, is the cost of sending a new vehicle from the depot to the customer

where the route failure occurred, i.e. a roundtrip.

For every depot a priority lists of potentially eligible customers’ locations is computed. For

∀& ∈ � , the list associated with & contains all nodes and is sorted according to the distance-

based marginal savings, depending on &.

a) First the minimum cost of assigning customer � to &*, the best alternative depot to

&, is computed, that is �*N∗ = ���∀ ∈PQ{N}{�* }.
b) Then R*N is computed, the marginal savings in cost associated with assigning

customer � to depot 	, instead of assigning � to & ∗: R*N = �*N∗ − �*N.

The marginal savings can be either positive (if & happens to be the “closest” depot to customer

�) or negative (otherwise). According to this, nodes that are much closer to one depot & than to

the other depots will present higher marginal savings for depot & and, accordingly, will be

selected with a higher priority for this depot, occupying the top positions in the sorted priority

23

list for depot &. On the contrary, nodes located in between two or more depots will present low

marginal savings for all depots and they will not become a priority for any depot. The nodes list

associated with each depot is sorted following this criterion.

The cost function aims at minimizing all occurring costs. It is stated as follows:

���S��
	��	���
� + ���
���	���
� + �����
��T	���
�

U

3.5 Pseudocode

A first version of a pseudocode is presented in this chapter. It is based on the given problem

description and the proposed solving process as described in the previous chapters but has some

limitations. It is a simplified approach to model the key elements of the proposed solving

process. The purpose of this chapter is to explain the proposed pseudocode and its logic. The

explanations concerning the limitations content-wise are given in chapter 4.1.1. This

pseudocode is later on implemented in Java and thus uses its commands.

The pseudocode has certain inputs: the data provided in the problem description, a

maximum time in which the implemented code is searching for feasible solutions and two

parameters for a geometrical distribution.

The pseudocode is divided in four sections: inputs/pre-processing, preliminary

computations, MS process and outputs. In the first section, displayed in Figure 10, the inputs

contain the position of the customers, depots and warehouses, also the number and type of

vehicles assigned to each depot and the distance-costs matrix. The customers are implemented

with random demands of every available product. The warehouses are implemented with an

inventory for every available product with virtually unlimited size. The distance-costs matrix

contains the traveling costs between each pair of map locations.

- procedure MultiStart-RichIRP(inputs, maxTime, alpha, beta)

-

- % INPUTS PRE-PROCESSING

- % Inputs contain: customers, depots, warehouses, vehicles, and distance-costs ma

% trix

- % Note: alpha and beta are parameters of a geometrical distribution for the vari

% ous performs biased randomizations

- 01 customers <- getCustomers(inputs) % customers with random demands of different

% products

- 02 depot <- getDepots(inputs) % hold a fixed fleet of different vehicles and a

% stock per product

- 03 warehouses <- getWarehouses(inputs) % hold a stock per product with virtually

% unlimited size

- 04 costsMatrix <- getCostsMatrix(inputs) % traveling costs between each pair of

% map locations

Figure 10 Pseudocode Inputs

In the second section (preliminary computations), a priority list, based on marginal savings in

distance costs, is generated for every depot. After generating a priority list for every existing

depot, the list is saved along with all other generated priority lists (Figure 11).

24

- % PRELIMINARY COMPUTATIONS

- % For each depot, generate a priority list based on marginal savings in distance

% costs

- 05 for each {depot in depots} do

- 06 priorityList(depot) <- genPriorityList(customers, depots, costsMatrix)

- 07 priorityLists <- add(priorityList(depot), priorityLists)

- 08 end for

Figure 11 Pseudocode Preliminary Computations

The third section (MS process) contains the key methods for solving the treated IRP. To save

the best computed solution and to compare the new solution with previously computed ones,

‘bestSol’ is defined. The process to search for new solutions is only running while the

maximum time is not exceeded.

Then a balanced customer-depot assignment map is generated. This map is obtained

employing a biased randomized round-robin process. Customers are assigned based on the

previously computed priority lists for each depot and the remaining capacity surplus of each

depot. The depot with the highest overall capacity of products left gets assigned the next

customer. The variable ‘alpha’ is used for the employed distribution of the biased randomization

when choosing the next customer. The result after this step is a map with sub-maps. Each sup-

map contains a depot with its assigned customers. This step is only finished when all customers

are assigned.

In the next step a routing solution is computed for each sub-map. This is done by using a

modified version of a biased randomized CWS heuristic to account for multi-product,

heterogeneous fleet and stock levels in the depots. The variable ‘beta’ is used as an input for the

used geometrical distribution in the biased randomization. For every computed solution of a

sub-map (‘subSol’) a check for feasibility is performed. Its feasibility depends on the balance of

depots’ capacities, vehicles’ capacities and customers’ demands for every product.

If the computed solution of the sub-map is feasible, a local search of routes is conducted by

using a memory cache of routes, to further improve the solution. The updated version of the

solution is saved as part of the new solution for the complete map.

In a final testing, the costs of the new solution for the complete map are compared to

previously computed complete solutions saved as best solutions up to this point of computing

solutions. If the new solution’s costs are lower than the currently best solution’s cost, the best

solution is replaced with the new solution and saved as the best. The complete process is

described in chapter 3.3.

If the computed solution of the sub-map is not feasible, a new search for a solution is

started.

After each completed loop of the described process, the elapsed time is updated (Figure 12).

25

- % MULTI-START PROCESS

- 09 bestSol <- empty sol with infinite cost

- 10 elapsedTime <- 0

- 11 while {elapsedTime < maxTime} do

- 12 newSol <- empty

- % 1. Generate a balanced biased randomized customer-depot assignment map using a

% round-robin process

- % (i.e., the depot with the highest capacity surplus will select next customer)

- 13 assignMap <- genRandAssignmentMap(customers, depots, priorityLists, alpha)

- % 2. Generate a routing solution for each sub-map using a modified version of a

% biased randomized Clarke and Wright Savings Heuristic to account for multi-

% product, heterogeneous fleet, and stock levels (use smallest possible vehicles

% first and larger ones as merge processes occur)

- 14 for each {subMap in assignMap} do

- 15 subSol <- biasedRandRichCWS(subMap, warehouses, costsMatrix, beta)

- 16 feasibility <- checkFeasibility(subSol)

- 17 if {feasibility is true} then

- 18 subSol <- localSearch(subSol) % use a memory-cache of routes

- 19 newSol <- add(subSol, newSol)

- 20 else

- 21 feasibility <- false

- 22 exit for

- 23 end if

- 24 end for

- % 3. If newSol is feasible, update bestSol if appropriate

- 25 if {feasibility is true} and {cost(newSol) < cost(bestSol)} then

- 26 bestSol <- newSol

- 27 end if

- 28 update elapsedTime

- 29 end while

Figure 12 Pseudocode Multi-Start Process

In the fourth section (outputs) the result of the previously computed best solution is returned and

the solving process is ended. The best solution contains the minimal amount of total expected

costs of all computed solutions and the related routing plan for every depot. See Figure 13.

-

- % OUTPUTS

- 30 return bestSol

-

- end procedure

Figure 13 Pseudocode Outputs

In the next chapter the presented pseudocode is implemented and analyzed in detail.

26

4 Implementation and Evaluation

4.1 First Implementation

The aim of the first implementation is to get a first working draft of the necessary code. A lot of

details are not included in the first version due to the necessity of checking if the basic structure

of the idea, as proposed in chapter 3.3, can be implemented. The first implementation does not

contain all described steps but establishes some groundwork for further advances. The

complexity in the first implementation is reduced for the purpose of obtaining a first working

version in a reasonable time frame.

A lot of details that are considered only during actual programming were not considered

beforehand, due to the complexity of the problem and the lack of overview. However, it must be

noted that when heuristic approaches are developed and implemented, the method is not exact

and it is necessary to experiment with different ideas. This is especially the case when the

treated problem is new and no benchmarks exist for its solving process, as is the case of the

present work.

In chapter 4.1.1 the solving process for the first implementation is described and the

differences to the proposed solving process are made clear. In chapter 4.1.2, a manual solution

is calculated, a method used by the employees of the company providing the information from

which realistic constraints for the treated IRP here are derived (see chapter 3.1). This manual

solution is used to verify the first implementation. In chapter 4.1.3 an outlook on further

possible improvements of the code is given based on the results of the previous sections. The

first implementation was performed in collaboration with Enoc Martinez from the IN3 of the

Universitat Oberta de Catalunya, Barcelona.

4.1.1 Solving Process

The first implementation of the code is described in this chapter. The proposed solving process

was net of the inventory planning and the inputs are deterministic with fixed customer demands,

while all other key elements are implemented. This approach reduces complexity while

maintaining a reasonable quality of generated solutions and leads to first test results in an

acceptable development time. Also, the adding of the stochastic later is not very time-

consuming and thus can be left out for the first implementation.

The beforehand described solving process with the steps assignment, inventory planning

and routing is reduced to only the assignment and routing steps. This is due to the exclusion of

stochastic values. The main reason for the step of the inventory planning is the variation in

customers’ demands when vehicles on previously determined routes arrive at the customer. This

makes a strategic decision about inventory levels necessary. When the demands are

deterministic, as in this first implementation, the consideration of different inventory levels is

obsolete, since the customers’ demand is fixed and so after the assignment step the necessary

inventory is clear for every depot.

27

The cost function as described in chapter 3.1 cannot be applied here due to the missing

inventory calculations. Therefore, in this implementation, it only consists of the set up costs for

each tour of the vehicles and the distance-based costs for the total amount travelled of each

vehicle. A parameter for the maximum cost (‘maxCost’) is not introduced at this stage, when

calculating assignments of customers to depots and routes, as it isn’t given in the problem

description. This parameter serves to dismiss calculated solutions as infeasible when it is

exceeded. In realistic scenarios this can be added. This is useful in already existing systems

which have a given cost and whose solution has to be improved by applying the algorithm.

In the following the assignment and routing are described with special focus on the

differences to the proposed solving process in chapter 3.3.

The inputs are as follows: There are three types of vehicles (small, medium and large with a

fixed number of compartments with a fixed capacity as described in the problem description)

and four products (every customer and every depot has capacities for every product). Also the

model is provided with the location of deposits, location of warehouses, location of customers

and the routing-cost function.

4.1.1.1 Assignment

In this step the customers are assigned to depots from which they are delivered. The main

difference in this first implementation is that instead of an ILS, a MS process is used to obtain

maps with customers assigned to depots. In an ILS, a destruction-reconstruction process is

performed where an initial solution is randomly partially destroyed and reconstructed. The MS

process can be seen as a particular case of an ILS where 100% of the initial solution is

destroyed and reconstructed. A well-tuned ILS should perform better by converging faster to a

near-optimal solution. However, an ILS structure is also more complex to tune than a MS one.

So, when implementing a MS process instead of an ILS, the purpose is to decrease the

complexity when obtaining a first version of the solution to reduce the writing time of the code.

The MS process already provides a complete initial approach to a complex problem.

As in the proposed solving process, the customers are assigned to depots with a capacitated

round-robin process. It is assumed that the inventory levels are set at 100%. While assigning

customers to the depots, the depot with the highest capacities left is chosen to be assigned to the

next customer. The customers are chosen from a priority list based on marginal savings and

with the help of biased randomization. The distances between all customers, depots and

warehouses are computed with coordinates and the Euclidean distance.

As described in the proposed solving process, an element is embedded in the code that

introduces randomness, called a random number generator (RNG). This is used for the biased

randomization in the assignment and routing steps of the algorithm. This RNG uses the static

Java method Math.random and in this implementation the method produces distributions,

returning random numbers from 0 to n-1 with a given n, defining the maximum number of

characteristics.

In order to check if a map is valid during the assignment process, the overall customer

demand has to be smaller than the sum of the vehicles’ capacities assigned to the depot. The

number and type of vehicles assigned to one depot stays the same during the whole process.

28

When the vehicles’ capacities are sufficient but the depots’ capacities are not, the

assignment is still valid. But then it is assumed that one vehicle has to start from the warehouse,

which implies a penalty cost for the additional distance covered by the vehicle. This cost is set

at 100 monetary units. The distance-based variable cost is set at 0.5 monetary units per unit of

length. These are just initial values and can be adapted to values used in a real scenario any time

later. The vehicles are required to arrive empty at the warehouse. Since the final code is planned

to have a fluctuating customer demand, the only option is to let the vehicles start at the

warehouse when a stop there is necessary. The warehouses in the IRP treated in the present

work have the condition that the arriving vehicles have to be empty. If customers’ demands

vary, this condition can only be fulfilled when vehicles stop at the warehouse at the beginning

of their routes, since the exact fill level of the vehicles can never be calculated previously when

dealing with stochastic values. The warehouses in this scenario have virtually unlimited stock

and thus are not included when calculating the capacities.

The feasibility of the assignment is only based on the balance of the capacities of depots and

vehicles and the customers’ demands. The distance between depots, customers and warehouses

is not considered in a realistic context at this stage. That is, time windows are not considered, so

vehicles can cover a distance that may not be manageable in real companies. This would mean

another constraint and make the problem too complex at this stage of the present work.

The result of the assignment step is shown in Figure 14.

Figure 14 Assignment of Customers to Depots

All customers are assigned to a depot and the warehouse can be accessed from every depot by

the vehicles assigned to each depot.

29

4.1.1.2 Routing

As proposed in chapter 3.3, an initial solution is improved using a randomized CWS heuristic

by choosing the vehicles with the biggest surplus of overall capacity. The aim is to generate the

highest amount of savings in distance that is possible.

The initial solution is obtained by employing an, at first, unlimited number of the smallest

vehicles possible. They are used to form routes directly to and from the depots to every

customer assigned to it. This process results in a number of routes which is equal to the number

of customers served. This initial solution is based on the assumption that the number of

compartments is always sufficient for the number of products requested by one customer in this

first implementation. This assumption is valid even if the overall number of products exceeds

the number of compartments in the biggest vehicle. This is due to the fact that the problem

treated in the present work is based on a realistic IRP in which the products are mainly oil and

gas, i.e., the customers (who are mostly private individuals) will most likely not request a broad

variety of the products offered by the company.

When merging the routes during the randomized CWS heuristic, all the vehicles available at

one depot are ideally used to generate the highest savings possible. So when merging two nodes,

the new route with the highest savings value chooses an available vehicle with the highest

surplus of capacity. This leads to assigning the biggest vehicles to the routes with the highest

savings. By applying this logic to the code, the biggest vehicle is most likely to be chosen first

and the smallest vehicle last. For this first implementation there is no other criterion apart from

availability linking vehicles and customers. But since the merging is done with the help of

biased randomization, the matching of saving values and size of vehicles is most expected to

have a reasonably good result. This is caused by the functionality of biased randomization (see

chapter 2.3.2). By biased randomizing the decisions about choosing a vehicle for a tour,

alternative scenarios are considered and the solution with the best result is returned as an output

when running the code. When implementing metaheuristic approaches, there is no clearly

defined way for finding the best solution. So it has to be experimented with different ways of

solving a given problem and thus finding the best solution in a given time.

If the biased randomized CWS heuristic is the only tool used to solve the routing plan,

problems can arise because the code picks new routes based on saving values to which

probabilities with the best outcome are assigned. Even if e.g., the highest saving value on top of

the generated priority list is, in total numbers, already much better than the saving value on the

2
nd

 position, then the 2
nd

 position still is eventually picked based on a certain probability and the

result can be expected to be much worse due to a much lower savings value. This circumstance

can be corrected using a route cache, where better routes than new ones being generated are

saved and a comparison between the two will lead to a termination of the routing in progress.

This saves computing time and improves the results significantly.

When merging the routes, not just the overall capacity of assigned vehicles is considered but

also the capacities for each individual product and the compartments’ sizes of the used vehicle.

In doing so the biggest compartment is matched with the product with the biggest amount to be

transported. This follows again the principle of matching the highest demand with the highest

surplus of capacities as used before.

30

The routes including a stop at a warehouse first, are treated with a special approach. The

selection about which node is approached first after the warehouse is performed again. This is

performed by choosing the node with the highest marginal savings from the viewpoint of the

warehouse. This is a first approach that can be extended to a biased randomized selection of first

nodes to approach after the warehouse. But it serves the purpose for the first implementation.

The routing process is visualized in Figure 15.

Figure 15 Routing Process

Time windows are again not considered in this first implementation due to the effort in

programming that comes with such an additional complexity in an IRP.

In the next section a first evaluation is conducted of the described implementation.

4.1.2 Case Study

When solving a given problem with heuristics, the solving process is a combination of various

individual elements. The quality of the elements is based on their outcome in previous testing or

knowledge obtained from previous research with given results. Accordingly, when dealing with

a heuristic solving process as in the present work, the chosen methodologies are only one

possible solution. In order to determine the benefit of the first implementation, in this chapter a

comparison is conducted between the implemented first code and a manual solution ‘by eye’

that is practiced in the company providing realistic information on IRPs. This provides an

impression whether the first implementation in Java is superior.

In the company, an experienced employee, familiar with the company’s system and

capacities, determines the assignment of customers to depots and the routing of vehicles without

the assistance of computers or any other methods or techniques. The employee considers the

31

customers’ locations and demands on a map and screens the available capacities of deposits and

vehicles. Afterwards assignment and routing with certain constraints (see chapter 3.2) are

determined, based on the proximity of map locations. This solving method is used in this

chapter for comparison to the developed implementation to evaluate the advantage in cost and

time management efficiency such a program can represent.

In the following chapters various tests are conducted with increasing problem size. The

algorithm is implemented and run as a Java application on a standard personal computer (Intel

Core 2 Duo processor, at 2.0 GHz with 4 GB RAM).

4.1.2.1 First series of test

The first manual test is based on random inputs as used in the first implementation. The used

values are only to a small proportion related to the described company’s problem since exact

locations and demands of their customers are not provided. The focus is merely on the

functionality of the code and the solving process, therefore the importance of the inputs is

negligible as long as they fulfill the main constraints as described in chapter 3.2. The inputs are

listed as follows.

• The number of customers is set at i = 20.

• The number of depots is set at d = 3.

• The number of warehouses is set at k = 1.

• The fixed set up costs for sending one vehicle on one route amounts to 100

monetary units.

• The variable distance-based costs are set at 0.5 monetary units per unit of length.

• The numbers of products is set at n = 2.

The customers’ IDs are used to identify their unique location and assigned demands, the

customers’ x and y coordinates and the demand for both products are displayed in Annex 1.

The depots are also described with their ID, x- and y-coordinate and the capacities for every

product. The values are displayed in Table 1.

Depot ID X-Coordinate Y-Coordinate Capacity Product 1 Capacity Product 2

21 20 20 1,000 300

22 30 40 1,000 100

23 50 30 1,000 100

Table 1 Depots Inputs Test 1

The following vehicles are assigned to the depots.

• Depot 21 and 22: one vehicle with two compartments and the capacities 50 and 50, two

vehicles with two compartments and the capacities 200 and 200.

• Depot 23: two vehicles with two compartments and the capacities 100 and 100.

 Finally the warehouse is described with its ID and the x- and y-coordinate in Table 2.

32

Warehouse ID X-Coordinate Y-Coordinate

24 70 70

Table 2 Warehouse Inputs Test 1

When calculating the manual solution, the constraints especially include the following ones and

are valid for all following implementations and case studies:

• All customers’ demands need to be satisfied 100% every time.

• All routes start and end at the same depot.

• The distances between map locations are computed using the Euclidean distance.

• Only one iteration is performed when solving the problem manually. No improvement

procedures are performed.

When computing the manual solution, no methods, as used in the implementation, are applied,

in order to generate the same solving process as the employee uses. The only factors

determining the assignment and routing, are the proximity of locations and sufficient capacities

of depots and vehicles. The necessary time to compute the manual solution is set as a maximum

time when running the first implementation and comparing the two results of the best solutions.

For the completion of the solving process, a coordinate system with the locations of

customers, depots and the warehouse is drawn. Then the assignment step is performed,

considering the maximum capacities of depots and vehicles and customers’ demands. The

minimum number of required vehicles is determined as well as if the necessity of the warehouse

as a first stop of a route arises. When no stop is necessary, the performed routes can be done in

either direction.

The result of the manual solving process is displayed in Table 3.

Depot 21 Depot 22 Depot 23

Assignment 4, 13, 14, 15, 17,

18, 19

1, 5, 6, 7, 8, 12 2, 3, 9, 10, 11, 16, 20

Routing 19-13-14-18

-4-17-15

8-7-6-1-5-12 3-2-11-16-9-20-10

Necessity of stop at WH No Yes Yes

Distance covered in units of length 96,13 179,91 129,97

Variable costs in monetary units 0,5*96,13=48,065 0,5*179,91=89,955 0,5*129,97=64,985

No. of routes/necessary vehicles 1 1 1

Set-up costs in monetary units 1*100=100 1*100=100 1*100=100

Table 3 Result of the Manual Solution Test 1

The necessary time of the assignment and routing for solving the given problem was 6 minutes

and 31 seconds. This is a tolerable time in a real-life scenario when an employee has to generate

a feasible solution in a short period of time every day. The total costs of this solution add up to

503.01 monetary units.

The same input and t

running the code. 988,376

is shown in the following T

Assignment

Routing

Necessity of stop at WH

Distance covered in units of leng

Variable costs in monetary units

No. of routes/necessary vehicles

Set-up costs in monetary units

Ta

This concludes total costs

shown in Figure 16.

Fi

The depots are shown in r

are displayed in yellow an

used vehicle.

33

 time frame (6min 31s) is used for computing a

76 solutions were computed in this time. The resul

Table 4.

Depot 21 Depot 22

1, 2, 4, 6, 7, 8, 10,

12, 14, 15, 16, 17,

18

5, 11

Vehicle 1: 4

Vehicle 2: 15-10-

16-2-8-7-1-6-14-

18-12-17

Vehicle 1: 5

Vehicle 2: 11

No No

ngth 200.8 52.36

 0.5*200.8=100.4 0.5*52.36=26.18

 2 2

2*100=200 2*100=200

able 4 Result of the Computational Solution Test 1

ts of 702.27 monetary units. The graphical result o

igure 16 Graphical Computational Solution Test 1

n red, the warehouse in the lower right corner in g

 and the routes connecting the nodes have a diffe

 a feasible solution by

ult of the best solution

Depot 23

3, 9, 13, 19, 20

20-9-3-13-19

No

151.38

0.5*151.38=75.69

1

1*100=100

t of the computation is

 green. The customers

fferent color for every

34

Comparing the manual and the computational solution, the costs of the computational result

are 39.61% higher than the manual solution.

This result leads to the conclusion that the manual solving process is superior to the

computational one, when applied to a problem as above with low complexity. The assumption is

though that the more complex a problem gets, the more difficult it is to calculate a solution

superior to the computational results to the same problem. Thus in the next chapter the problem

size is increased and the same comparison is conducted with a larger input size.

4.1.2.2 Second series of test

In the second test the inputs are modified so that they are building a more complex problem to

solve. This serves the purpose of proving that the more complex a problem gets, the more

difficult it is for a manual solution to be superior to the computational result. Since in the case

of IRPs the complexity is very high, computational results provide a way of solving those

problems efficiently. In order to make the problem solvable in a manual way, the input problem

is still not too extensive.

In Annex 2 the customer inputs for this series of test are displayed. They consist of a

number of customers i = 100 and the number of demanded products n = 3. In Table 5 the depot

inputs are displayed.

Depot ID X-Coordinate Y-Coordinate

Capacity

Product 1

Capacity

Product 2

Capacity

Product 3

101 20 20 1,000 300 200

102 30 40 1,000 100 100

103 50 30 1,000 100 100

Table 5 Depots Inputs Test 2

The following vehicles are part of the company’s fleet:

• Small vehicle: 4,000L overall capacity with two compartments (50%/50%).

• Medium vehicle: 9,000L overall capacity and three compartments (20%/35%/45%).

• Large vehicle: 30,000L overall capacity and three compartments (20%/35%/45%).

The fixed assignment of vehicles to depots is as follows:

• Depot 101: 2 small, 1 medium, 1 large vehicle

• Depot 102: 1 medium vehicle

• Depot 103: 1 small, 1 medium vehicle

This is the first step of testing the treated IRP in a manual test. The overall capacity still is much

higher than the demand while the number of customers is increased. Thus the complexity of the

problem is increased gradually. Only the medium and large vehicles are allowed to stop at the

warehouse.

Finally the warehouse is described with its ID and the x- and y-coordinate in Table 6.

35

Warehouse ID X-Coordinate Y-Coordinate

104 70 70

Table 6 Warehouse Inputs Test 2

The same solving process and the same constraints are applied to this given problem as

described in chapter 4.1.2.1.

The result of the manual solving process is displayed in Table 7.

Depot 101 Depot 102 Depot 103

Assignment 4, 13, 14, 15, 17, 18,

19, 26, 33, 34, 38, 39,

44, 52, 53, 54, 58, 59,

67, 73, 74, 77, 78, 82,

84, 85, 90, 91, 92, 95,

96, 97, 99

1, 3, 6, 7, 8, 11, 12,

24, 27, 28, 32, 35, 37,

41, 45, 46, 47, 48, 55.

57, 61, 64,65, 66, 68,

72, 79, 83, 86, 88

2, 5, 9, 10, 16, 20, 21,

22, 23, 25, 29, 30, 31,

36, 40, 42, 43, 49, 50,

51, 56, 60, 62, 63, 69,

70, 71, 75, 76, 80, 81,

87, 89, 93, 94, 98, 100

Routing 38-4-34-97-58-19-54-

73-13-33-53-91-14-

74-96-82-85-18/67-

39-92-59-78-44-26-

52-17-90-15-99-77-

95-84

32-72-37-86-6-64-27-

79-3-7-47-66-46-24-

28-8-61-65-83-88-1-

41-45-11-35-55-12-

68-48-57

63-20-9-30-76-94-87-

42-29-81-22-60-2-23-

80-50-16-98-70-51-

89-21-5-93-75-25-71-

31-100-40-36-49-10-

56-43-62

Necessity of stop at WH No No No

Distance covered in units of length 170.96 162.78 165.78

Variable costs in monetary units 0.5*170.96=85.48 0.5*162.78=81.39 0.5*165.78=83.28

No. of routes/necessary vehicles 1 1 1

Set-up costs in monetary units 1*100=100 1*100=100 1*100=100

Table 7 Result of the Manual Solution Test 2

The necessary time of the assignment and routing for solving the given problem was 21 minutes

and 12 seconds. This is a tolerable time in a real-life scenario when an employee has to generate

a feasible solution in a short period of time every day.

The total costs of this solution add up to 549.76 monetary units.

The same input and time frame (21min 12s) is used for computing a feasible solution by

running the code. 74,491 solutions were computed in this time. The results of the computational

solving are displayed in Table 8 and in Figure 17.

36

Depot 101 Depot 102 Depot 103

Assignment 2, 6, 17, 18, 22, 26, 33,

34, 35, 38, 41, 42, 45,

53, 56, 60, 61, 67, 79,

82, 93

1, 7, 11, 14, 17, 23, 25,

26, 29, 35, 37, 38, 40,

45, 47, 48, 49, 55, 56,

57, 60, 61, 63, 66, 69,

77, 82, 85, 87, 89, 90,

95

2, 9, 20, 22, 34, 37, 46,

54, 55, 57, 61, 64, 84,

100

Table 8 Result of the Computational Solution Test 2

Figure 17 Graphical Computational Solution Test 2

The results as displayed suggest a malfunction of the implemented code. Since the first test was

already conducted with this version of the code, the second test is terminated here for a lack of

possible comparisons. For improved results and for a following correct verification and

validation process the code is successfully improved and described in chapter 4.2.

37

4.1.3 Outlook

Based on the first implementation and the proposed solving process an outlook is given in this

chapter on possibilities to improve the first version of the implemented code.

The differences of the first implementation to the proposed solving process are discussed in

chapter 4.1.1. In the current chapter an analysis is conducted of observations made during the

first implementation process, with a special focus on details that were not detected as relevant

before.

During the implementation it is assumed that the number of vehicles never exceeds the

number of routes and also that the number of compartments is always sufficient for transporting

all products in demand. It is also assumed that one customer is only visited by one vehicle per

period. When aiming at implementing a general approach to a problem as in the present work, it

is not expedient. While the code allows the modification of the number of compartments,

products, number of vehicles etc., it still includes the assumption as stated above. This can lead

to unfeasible solutions when not all customers’ demands can be served. In order to avoid this,

an approach is to allow one vehicle for driving more than one route. When customers order

more products than there are compartments in the biggest available vehicle, the order can be

split and one customer can be treated as two customers with the exact same location. This way,

at least one other vehicle can deliver the rest of the demanded products. This approach is also

useful when one customer orders more products than there is capacity in the biggest available

vehicle. When stochastic demands are used as inputs, the change in customers’ demands can

lead to route failures as described in chapter 3.3.

When considering the possibility of various vehicles visiting one customer and one vehicle

being able to drive several routes, time windows for deliveries and a maximum time or

maximum distance covered in all routes become more relevant. Time and covered distance were

not considered in the first implementation due to too much complexity. But considering realistic

inventory routing systems, time and distance are an important influence on costs and fulfilled

demands e.g., drivers of vehicles cannot exceed a certain maximum driving time. Additionally,

based on the current system only linear distances are calculated between map locations, not

actual distances that would arise on roads connecting the locations. Realistic distances would be

the route travelled on the roads between nodes. When implementing a system to compute

distances that can lead to route failure, when exceeding a defined maximum distance, exact

distances between nodes become more relevant. This is possible by implementing a tool using

e.g., Google maps, calculating the distances between two exact locations on a map. This way

time and distance are easier to measure and can be used as an indicator for route failures.

During the implementation and testing of the routing process, a few issues became apparent that

are listed below:

• Crossing of routes, e.g. as displayed in Figure 16, which may lead to inferior solutions.

• One vehicle for one customer only even though the capacity would allow for much

more and thus spending a lot on set up costs instead of checking if the customer could

be served by another vehicle on an already existing route.

38

• There is no implemented functionality which aims at designing routing “circles”,

instead the routing is done randomly and thus enables a going forth and back between

nodes which in realistic scenarios can lead to inefficient solutions.

Further observations are listed below:

• When using the capacitated round-robin process to assign customers to depots, only the

overall capacity of products is considered but not individual products when deciding

which depot gets picked next for the assignment. This can lead to an assignment of

customers without sufficient stock at the depot to serve them. A solution could be to

consider every product individually during the assignment step.

• When routes include a trip to the warehouse, the choosing of which customer is the first

stop after the warehouse could be biased randomized. In the first implementation the

first customer is chosen based solely on the lowest distance to the warehouse which can

lead to suboptimal results.

• The cost function should be fixed so it can work correctly. It also can be amended by

including arising costs for additionally purchased products, depending on the purchased

amount, when including the warehouse in a trip. Also, when implementing a

heterogeneous fleet, different variable costs can be associated with different vehicles

e.g., depending on their size and features.

These observations only serve as ideas on how to further improve the implementation and to

make the solving process more realistic. It is most likely that not all proposed changes can be

implemented due to the already high complexity of the IRP and the solving process. They serve

as impulses for further improvement.

4.2 Second Implementation

The second implementation was done based on the previously described one and extended in

collaboration with Gabriel Alemany, student at the Universitat Oberta de Catalunya, Barcelona.

The basic structure of the processes and the single steps are not changed but they are refined and

include several adaptations as planned in the outlook in the previous chapter. In the following

sections, the solving process is described (4.2.1) and a case study is conducted (4.2.2) based on

the second implementation. To avoid redundancies, not the whole structure of the solving

process is described again but the changes conducted compared to the previous implementation

in chapter 4.1.

4.2.1 Solving Process

In the second implementation the focus is on refining the routing procedures, eliminating errors

and to reach a positive validation. For this purpose and to experiment, the input values are still

deterministic and the inventory levels of the depots at 100%.

The most extensive change was conducted in the implementation of the routing. In the first

implementation, a lot of routes were crossing each other, supplying customers further away

39

from the depot than other customers and thus destroying the logic behind the heuristic

procedure of finding feasible routes. Improving routes in the first implementation was only a

small part of the algorithm. It was done by comparing three consecutive edges forming a route

in different combinations. This procedure is displayed exemplary in Figure 18.

Figure 18 Routing Improvement Implementation 1 (based on Croes 1958)

When forming routes, the algorithm of the first implementation would consider different routing

options and choose the one with the lowest overall costs. But the algorithm would do this only

for three consecutive segments of a routing option.

In the second implementation, the improvement of the routing is performed using a 2-opt

algorithm. In optimization, 2-opt is a local search algorithm without perturbations first proposed

by Croes (1958) for solving the TSP. It has the same functionality as the approach described

above but extends the check over the three consecutive road segments for complete routes and

thus removes knots of routes and minimizes routing costs significantly. In the first

implementation, every segment (the route between map locations) was treated as just one single

segment. In the second implementation each segment consists of the number of products that are

transported on this segment. So it is a set of segments, or sub-routes, equal to the total number

of products transported on the route. In this implementation it is possible to have customers

being visited by more than one vehicle. This solves the in the previous implementation existing

problem in case the number of products is bigger than the number of compartments in the

biggest available vehicle and also allows for more economical routing solutions. So when

creating sub-routes, the algorithm also creates sub-costumers, each with a demand of exactly

one product. So one customer will consist of as many sub-customers as the customer requests

products. Vehicles can pursue one sub-route and deliver any amount of product they have

loaded. If a parallel sub-route is similar to the first one and the vehicle has loaded the product in

demand, it can supply it as well. As every sub-customer only demands one product, the route

between two sub-customers belonging to the same customer is measured with a distance of 0

units of length for the vehicle.

a

b

c

dOption 1

Option 2

40

During the routing, the depot is maintained as the starting and ending point of a route. When

a route includes the stop at a warehouse, which has to be the first stop of a route, then the

algorithm disallows to break the link between the depot and the warehouse. At the end of the

routing the algorithm checks if the warehouse is at the beginning or end of a route. If it is

located at the end, the whole route is reversed.

In this work a particular case of a problem with only one warehouse is solved. But the work

aims at a general algorithm. Thus, when optimizing the routing with several warehouses, the

picking of the warehouse to be included in a route is as follows: when the routes are already

formed, the warehouse nearest to the center of the route is added as a first stop to the route.

Finally the route is again optimized and the route is changed as needed.

When a stop at the warehouse is necessary, there is no penalty cost but instead the

additional distance cost for driving to the warehouse and afterwards to the first node of the

following route is computed and added to the total costs.

In the first implementation, when using the capacitated round-robin process to assign

customers to depots, only the overall capacity of products is considered but not individual

products when deciding which depot gets picked next for the assignment. This approach is

extended to a two-phase round-robin process.

In the first phase, a basic round-robin process is applied to the depots. For each of the

depots, a priority list of customers is computed and the depots pick one customer each round.

This process is continued until one depot runs out of capacities. Then the second phase begins

and continues to assign the remaining customers to the depots with remaining capacities.

During the second phase, a capacitated round-robin process is employed as described in

chapter 3.3. The depot with the highest surplus of transport capacities chooses the next customer

from its priority list for high savings. This way the advantages of an evenly distributed number

of customers and assigning more customers to depots with a higher capacity are exploited. This

approach creates a map with comparably balanced sub-maps. Thus not only the depots’

capacities are considered but also the distribution of customers’ locations.

In the next chapter a case study is conducted evaluating the second implementation.

4.2.2 Case Study

The inputs for this case study were created randomly to a great extent due to unknown customer

locations and demands in the given problem. The number of depots, warehouses, vehicle types

and associated vehicle compartments were adopted from the original problem.

When the demands were created, for practical purposes the only constraint was they would

not exceed the combined vehicles’ capacities of all existing depots.

The inputs are listed as follows.

• The number of customers is set at i = 100.

• The number of depots is set at d = 3.

• The number of warehouses is set at k = 1.

• The fixed set up costs for sending one vehicle on one route amount to 100 monetary

units.

• The variable distance-based costs are set at 0.5 monetary units per unit of length.

41

• The numbers of products is set at n = 4.

In Annex 3 the complete customer inputs for this series of test are displayed. An additional

constraint includes that it can be determined for vehicles whether they are allowed to drive to

the warehouse or not. In the following Table 9 the depot inputs are displayed.

Depot ID X-Coordinate Y-Coordinate

Capacity

Product 1

Capacity

Product 2

Capacity

Product 3

Capacity

Product 4

101 29 21 74,742 81,408 86,250 72,762

102 154 19 70,836 62,394 71,706 63,066

103 64 62 81,924 82,422 68,358 66,804

Table 9 Depot Inputs Test 3

The following vehicles are part of the company’s fleet:

• Small vehicle: 4,000L overall capacity with two compartments (50%/50%).

• Medium vehicle: 9,000L overall capacity and three compartments (20%/35%/45%).

• Large vehicle: 30,000L overall capacity and three compartments (20%/35%/45%).

The fixed assignment of vehicles to depots is as follows:

• Depot 101: 7 small, 7 medium vehicles

• Depot 102: 7 small, 7 medium vehicles

• Depot 103: 7 small, 5 large vehicles

The warehouse is described with its ID and the x- and y-coordinate in Table 10.

Warehouse ID X-Coordinate Y-Coordinate

104 60 36

Table 10 Warehouse Inputs Test 3

Due to the case study’s complexity, for the manual solution the time frame was set at one hour

to simulate a realistic company environment where an employee can prepare an assignment and

routing plan for the day.

The solving of the given problem was started randomly with depot 102. After the expiration

of one hour, the assignment was conducted but the routing and the capacity check for the

vehicles delivering the customers was only performed for only about four vehicles of one depot.

This is owed to the long times for checking the capacities of available vehicles, their

compartments and the customers’ demands. Not even a quarter of all customers was evenly

supplied, almost none were completely supplied. The results after one hour are shown in Table

11.

42

Depot 101 Depot 102 Depot 103

Assignment 1, 2, 3, 4, 6, 7, 13, 14,

15, 16, 17, 18, 20, 21,

22, 24, 25, 26, 27, 28,

 29, 30, 31, 34, 35, 38,

39, 43, 44, 45, 46, 52,

 54

5, 9, 10, 11, 12, 19, 23,

33, 37, 42, 49, 50, 51,

 58, 65, 67, 77, 78, 85,

89, 90, 97

32, 36, 40, 41, 47, 48,

53, 55, 56, 57, 59, 60,

61, 62, 63, 64, 66, 68,

69, 70, 71, 72, 73, 74,

75, 76, 79, 80,81, 82,

83, 84, 86, 87, 88, 91,

92, 93, 94, 95, 96, 98,

99, 100

Routing N.A. Vehicle 1, Type small:

9-10-5-12-19

Vehicle 2, Type

medium: 37-50-49-65-

67-77-78-89-90

Vehicle 3, Type

medium: 11-12-23-33-

42-51-58-85

Vehicle 4, Type

medium: 23-42-51-58-

85-97-90-89-78

*rest remains

N.A.

Necessity of stop at WH N.A. No

*rest remains

N.A.

Distance covered in units of

length

N.A. 510.72

*rest remains

N.A.

Variable costs in monetary units N.A. 510.72*0.5=255.36

*rest remains

N.A.

No. of routes/necessary vehicles N.A. 4

*rest remains

N.A.

Set-up costs in monetary units N.A. 4*100=400

*rest remains

N.A.

Table 11 Result of the Manual Solution Test 3

57,514 solutions were computed in the given time frame of one hour. The results of the

computational solving are displayed in Table 12 and in Figure 19. For the complete output of

the program the reader is referred to Annex 4. It includes the total costs, the assignment and the

routing but is summarized with the information given in Table 12.

43

Depot 101 Depot 102 Depot 103

Assignment 1, 2, 6, 7, 8, 13, 14, 20,

21, 22, 24, 25, 27, 28,

29, 34, 38, 39, 43, 44,

45, 52, 54, 59, 68

4, 5, 9, 10, 11, 12, 16,

18, 19, 23, 32, 33, 37,

42, 49, 50, 51, 58, 65,

67, 77, 78, 85, 89, 90,

97

3, 4, 15, 16, 17, 18, 26,

32, 36, 40, 41, 46, 47,

48, 53, 55, 56, 57, 60,

61, 62, 63, 64, 66, 69,

70, 71, 72, 73, 74, 75,

76, 79, 80, 81, 82, 83,

84, 86, 88, 91, 92, 93,

94, 95, 96, 98, 99, 100

Routing Vehicle 1: 35-45-28-

29-25-14-22-2-1

Vehicle 2: 21-22-2-1-8

Vehicle 3: 7-6-13-24

-27

Vehicle 4: 7-20-6-13-

24-34-27

Vehicle 5: 35-44-39

-25

Vehicle 6: 38-59-68

-54-52-43-34

Vehicle 7: 45-59-68

-52-43-38

Vehicle 1: 11-5-10-9-

18-16-32

Vehicle 2: 23-42-33

-32-16-4-9

Vehicle 3: 19-12-23

-51-37

Vehicle 4: 37-49-65

-77-89-90-67

Vehicle 5: 51-58-85

-97-78

Vehicle 6: 11-5-10-9

Vehicle 7: 33-58-85

-89-77-65-49-50

Vehicle 1: 84-100-88-

96-76-73-72-63-62-57-

47-36-48-41-17-3-15-

31-30-56

Vehicle 2: 75-100-88-

96-76-73-63-64-41-40-

48-47-26-16-3-15-31-

30-46-60-80-79-91-86-

92-81-56-61

Vehicle 3: 62-53-57-61-

66-55-60-70-69-74-98-

93-94-82

Vehicle 4: 95-87-94-82-

71

Vehicle 5: 83-87-99-81-

93-92-86-91-79-80-69-

70-60-55-66

Necessity of stop at WH No No No

Distance covered in units of

length

N.A. N.A. N.A.

Variable costs in monetary units 123.82 + 91.91 + 55.65

+ 70.02 + 75.92 +

109.18 + 101.81 =

628.31

177.39 +.205.67 +

80.86 + 115.69 +

125.73 + 41.85 +

133.18 = 885.37

244.02 + 354.19 +

180.48 + 63.53 +

157.45 = 999.67

No. of routes/necessary vehicles 7 7 5

Set-up costs in monetary units N.A. N.A. N.A.

Table 12 Result of the Computational Solution Test 3

44

Figure 19 Graphical Computational Results Test 3

The depots are shown in red, the warehouse in the lower right corner in green. The customers

are displayed in yellow and the routes connecting the nodes have a different color for every

used vehicle. The arrows included in the routes imply the vehicles’ travelling direction.

The total costs amount to 2,508.37 monetary units as an output provided by the code. A

manual review however led to the specification of costs as displayed in Table 13.

Depot 101 Depot 102 Depot 103

Distance covered in units of length 531.72

890.90 998,53

Variable costs in monetary units 531.72*0,5 = 265,86 890.90*0.5 = 445.45

998.53*0.5 = 499.27

No. of routes/ necessary vehicles 7 7 5

Set-up costs in monetary units

7*100 = 700

7*100 = 700

5*100 = 500

Table 13 Manual Review of Computational Results Test 3

As demonstrated, the costs differ from the costs provided in Table 12. The overall costs in the

review amount to 3,084.42 when considering the set up costs and costs per km as indicated

above.

Further comparison of the manual and the computational solution shows that the assignment

of the customers to depots in the computational solution was based more on the overall

capacities of vehicles assigned to the individual depot. In the manual solution, the reason for

assigning a customer was rather the minimal distance to a depot. The overall capacity check for

customers’ demands and vehicles’ capacity was valid for the manual solution. But by assigning

roughly an even number of customers to all depots, it may have led to more individual routes of

vehicles than the computational solution and thus to higher set up costs.

45

As far as available, the routing of the computational and the manual solution also indicate

the superiority of the computational to the manual solution: The routes are not comparable since

the order of approached nodes is different. But it is already noticeable that the computational

solution manages the same number of nodes with fewer vehicles due to a better workload of the

vehicles’ capacities for the customers’ demands.

It should also be noted that the computational solution was already found after about 43

minutes of computing time while after one hour of manual solving, only the assignment was

completed.

This validates and verifies the developed code and thus it is further developed.

4.2.3 Outlook

Based on the second implementation and the proposed solving process an outlook is given in

this chapter on possibilities to improve and complete the second version of the implemented

code.

A lot of requirements described in the outlook of the previous implementation (see chapter

4.1.3) have been successfully implemented. The code is in a stage where it is working well but

can be refined and functional features remain not implemented, i.e., the stochastic inputs and the

variability of inventory levels as described in chapter 4.1.1.

The malfunction of the cost function should be fixed to work as intended. It would be

beneficial to create the possibility of assigning fixed and variable cost to every vehicle so the

individual mileage and other individual costs can be measured correctly, depending on their size

and other features. This functionality would respond to the intended implementation of a

heterogeneous fleet. The cost function could be extended to include costs for additionally

purchased products at the warehouse, depending on the purchased amount, when including the

warehouse in a route.

The inclusion of the warehouse in the routing could also be improved. In the second

implementation, a 2-opt algorithm with a local search procedure is used for improving the

routing and also the inclusion of a warehouse into a single route. The disadvantage of this

algorithm is that it can get stuck in a local optimum and has no functionality to overcome it.

This algorithm could be replaced with a biased randomization with a perturbation of the

computed solutions to compute the routes and to find the node that is approached first after the

warehouse. This algorithm is more likely to find global optimums and thus increase the quality

of the computed solutions.

When using the capacitated round-robin process to assign customers to depots, only the

overall capacity of products is considered but not individual products when deciding which

depot gets picked next for the assignment. This can lead to an assignment of customers without

sufficient stock of individual products at the depot to serve them. A solution could be to

consider every product individually during the assignment step.

To make the algorithm more realistic, as already described in chapter 4.1.3, time windows

or the maximum of distances could be introduced as factors leading to route failure when

violating previously set maximum constraints. Connected to this feature it would be useful to

introduce a tool to compute exact distances between map locations instead of using the

46

Euclidean distance. This would refine the computing of costs and would be a mandatory feature

when calculating time windows and/or maximum route distances.

The proposed changes only serve as ideas on how to further improve the implementation

and to make the solving process more realistic. It is most likely that not all proposed changes

can be implemented due to the already high complexity of the IRP and the solving process.

They serve as impulses for further improvement.

4.3 Final Implementation

The final implementation was done based on the previously described ones and written by Lena

Pfeilsticker. The basic structure of the processes and steps is not changed but the single steps are

refined and include several adaptations as planned in the outlook in the previous chapter. In the

following sections, the solving process is described (4.3.1) and two final case studies conducted

(4.3.2), a deterministic and a stochastic one, based on the final implementation. To avoid

redundancies, not the whole structure of the solving process is described again but the changes

conducted compared to the previous implementations described in the chapters 4.1 and 4.2.

4.3.1 Solving Process

After refining the routing procedures in the previous implementation, the focus in the final

implementation is on adding stochastic input data and possible adaptations of the depots’

individual inventory to minimize overall costs for the inventory routing system. Also, some

errors are fixed and some functionalities of the code are refined. The basic structure of the

solving process remains while the conducted changes are explained as follows.

The biggest change of the codes’ structure is the implementation of being able to generate

stochastic input values as customers’ demands and to set the depots’ inventory levels based on

the resulting overall stochastic demands of their assigned customers. The implementation of this

functionality increases the algorithm’s complexity, thus this part was implemented during the

last steps of writing the code. The two parts are implemented simultaneously. This is due to the

influence they have on one another. When the customers’ demands are deterministic, the overall

customer demand that needs to be supplied from one depot can be estimated and determined

previously based on the vehicles’ capacities assigned to a depot. Thus the inventory levels can

be estimated almost exactly and can be set at one level. When the demands are stochastic, the

significance of the inventory level increases substantially. Customers’ demands cannot be

estimated reliably due to their variation. When demands are stochastic and the customers are

supplied, the demand may exceed or undershoot the set inventory level. This can either lead to

route failures and consequentially to high routing costs for additional routes for getting

additional products or on the other hand to high stock costs when the inventory level exceeds

the demand. So the inventory levels need to be determined while maintaining minimal costs

consisting of routing and stock costs. This can be accomplished using simulation with a

distribution function for the customer demand reflecting its fluctuation.

In the present work the depots’ inventory levels are modeled using a lognormal distribution

with ./)*+0 = 	*+, where 	*+ represents the fixed demands for each depot i and product n and

47

)*+ the probabilistic demand respectively. The distribution type is interchangeable as long as it

has a mean. It was chosen based on its use in the related research area of routing problems,

especially in the field of distributing products in a gas or liquid state. Three different levels of

variance are considered: ���/)*+0 = &		*+ with & = 0.25 defining a ‘low’ variance scenario,

& = 0.5 defining an ‘intermediate’ variance scenario and & = 0.75 defining a ‘high’ variance

scenario. For every run, the random customer demands are generated once.

For the customer assignment, the first step of the algorithm, the customer demand is

deterministic. When the algorithm has performed the customer assignment and the complete

map of customers, depots and the warehouse is depicted, a calculation of the demand each depot

has to serve of every product can be performed. This reflects the knowledge a planner has of the

product amount to be distributed before arriving at the customers’ locations. Based on this

calculation the overall amount of requested products is used as a mean value for the lognormal

distribution. For the products, a ‘product key’ is built reflecting the share one product has in the

overall demand of one depot. The lognormal distribution is calculated applying different

variances as previously described. Following this different inventory levels are set according to

five different policies, representing the percentage of the inventory’s filling level p = {0.0, 0.25,

0.5, 0.75, 1.0}. These percentages are multiplied with the maximum capacity which is twice of

the expected demand and the inventory levels for each policy are set. The values can easily be

modified, the approach serves to provide a first indication on possible results.

During a pre-determined number of simulation runs, the routing and stock costs are

calculated for every policy. Different stock cost rates are applied to simulate different scenarios.

The inserted values are λ = {0.01, 0.25, 0.5, 0.75, 1.0}. The higher the inventory level, the

higher the stock costs but also the lower the routing costs to the warehouse due to little to no

additional products that need to be purchased to fulfill 100% of customers’ demands. The best

policy for each individual depot is applied to set the inventory level. To ascertain the individual

products’ inventory levels, the product key is applied to the overall amount of product. In the

algorithm, the routing process is then performed based on the new inventory levels. During this

routing process, a new random customer demand based on the same probability distribution is

generated. This enables generating different values from the ones the refill policies were

decided from and to simulate how well the program can cope with the fluctuation.

 This functionality makes the code more realistic and easily adaptable to different strategies

used as input.

Furthermore, the possibility of using exact distances between locations of the given map

was implemented by Gabriel Alemany. It can be decided beforehand in the input if the distances

are computed using the Euclidean distance or if exact distances are employed. The exact

distances need to be entered. The disadvantage is, that the more locations (customers, depots

and warehouses) are used, the more distances need to be entered (between all map locations).

Also, the possibility of inserting maximum distances that can be driven for all used vehicles

was introduced by Gabriel Alemany. This makes the algorithm more realistic and enables to

estimate maximum times for driving one vehicle by considering the used roads and determine a

mean value for the driving speed. When none is given, the vehicle can drive an unlimited

distance.

48

Another improvement is the possibility of modifying inputs which allows setting the fixed

and variable routing costs for every vehicle type.

4.3.2 Case Studies

The final case study conducts a comparison between the functioning of the deterministic code

version before the adaption and the stochastic version afterwards. The results are validated and

verified with regards to their computation of solutions and costs. First the deterministic version

is described and subsequently the testing of the stochastic version.

4.3.2.1 Deterministic Series of Tests

The changes conducted in the code before the adding of the stochastic part are listed as follows:

• A modification of inputs to set the fixed and variable routing costs.

• The possibility of inserting a maximum distance for all used vehicles.

• The possibility of using exact distances between all map locations.

All further changes described in the solving process apply to the stochastic series of tests in the

following chapter. For the testing of the deterministic code, provided by Gabriel Alemany, the

input data and its modifications are as subsequently described.

• The number of customers is set at i = 100.

• The number of depots is set at d = 3.

• The number of warehouses is set at k = 1.

• The fixed set up costs for sending one vehicle on one route amount to 110 monetary

units for the small, 120 for the medium and 130 for the large vehicle.

• There is no set maximum distance for any employed vehicle.

• The variable distance-based costs are set at 0.5 monetary units per unit of length.

• The numbers of products is set at n = 4.

The complete customer inputs for this series of test are similar to the inputs used in the second

case study and are listed in Annex 3. Also, again not all vehicles are able to pick up new

products at the warehouse. In the following Table 14 the depot inputs are displayed.

Depot ID X-Coordinate Y-Coordinate

Capacity

Product 1

Capacity

Product 2

Capacity

Product 3

Capacity

Product 4

101 29 21

p * expDem 102 154 19

103 64 62

Table 14 Inputs Depots Deterministic Final Code

For every product n, the capacity in every depot is set according to the chosen policy p and the

expected demand ‘expDem’ as determined prior to the test runs. This calculation is explained by

companies orientating the size of their depots according to the expected demands that are

fulfilled from each depot respectively. This approach allows a direct comparison of the effect of

49

insufficient product capacity in comparison to additional distances to be covered by vehicles

since the routing process is performed by also considering the depots’ inventory levels.

The considered policies are set at p = {0.0, 0.25, 0.5, 0.75, 1.0} and the stock cost rate at λ =

{0.01, 0.25, 0.5, 0.75, 1.0}. This leads to the inventory capacities as displayed in Table 15.

Policy 0.0 Policy 0.25 Policy 0.5 Policy 0.75 Policy 1.0

Depot 1 - 3,750

3,750

3,750

3,750

7,500

7,500

7,500

7,500

11,250

11,250

11,250

11,250

15,000

15,000

15,000

15,000

Depot 2 - 3,750

3,750

3,750

3,750

7,500

7,500

7,500

7,500

11,250

11,250

11,250

11,250

15,000

15,000

15,000

15,000

Depot 3 - 6,250

6,250

6,250

6,250

12,500

12,500

12,500

12,500

18,750

18,750

18,750

18,750

25,000

25,000

25,000

25,000

Table 15 Deterministic Inventory Levels for all Depots and Policies

The number of the depots’ vehicles and associated capacities and number of compartments

remains, the values can be looked up in chapter 4.2.2.

The warehouse is described with its ID and the x- and y-coordinate in Table 16.

Warehouse ID X-Coordinate Y-Coordinate

104 60 36

Table 16 Warehouse Inputs Final Deterministic Test

For the computation of results the run time was set at 45 min for every one of the five tests due

to no improvement of previously computed solutions between minute 45 and 60 during the run

time and the number of tests to be performed. The inventory levels were calculated prior to the

testing based on the expected deterministic customer demand per depot. The number of

computed solutions ranged between 90,000 and 98,000.

The overall customer demand accumulated over all products amounts to 170,064 products.

The costs for the remaining inventory are computed at the end of each period after all shipments

are completed. That leads to the following inventory costs for each policy in Table 17.

50

Policy 0.25 Policy 0.5 Policy 0.75 Policy 1.0

Accumulated Inventory Depot 1 15,000 30,000 45,000 60,000

 Depot 2 15,000 30,000 45,000 60,000

 Depot 3 25,000 50,000 75,000 100,000

Overall Inventory 55,000 110,000 165,000 220,000

Difference to overall customer demand -115,064 -60,064 -5,064 49,936

Inventory Costs λ 0.01 0 0 0 499.36

 0.25 0 0 0 12,484

 0.5 0 0 0 24,968

 0.75 0 0 0 37,452

 1.0 0 0 0 49,936

Table 17 Inventory Costs per Policy

The complete results of this series of tests are summarized in Table 18. The abbreviations stand

for R: routing costs, I: inventory costs, T: total costs.

Policy 0.0 Policy 0.25 Policy 0.5 Policy 0.75 Policy 1.0

Lambda 0.01 R: 2,733.38

I: -

T: 2,733.38

R: 2,551.86

I: 0

T: 2,551.86

R: 2,511.82

I: 0

T: 2,511.82

R: 2,503.50

I: 0

T: 2,503.50

R: 2,503.50

I: 499.36

T: 3,002.86

Lambda 0.25 R: 2,733.38

I: -

T: 2,733.38

R: 2,551.86

I: 0

T: 2,551.86

R: 2,511.82

I: 0

T: 2,511.82

R: 2,503.50

I: 0

T: 2,503.50

R: 2,503.50

I: 12,484

T: 14,987.5

Lambda 0.5 R: 2,733.38

I: -

T: 2,733.38

R: 2,551.86

I: 0

T: 2,551.86

R: 2,511.82

I: 0

T: 2,511.82

R: 2,503.50

I: 0

T: 2,503.50

R: 2,503.50

I: 24,968

T: 27,471.50

Lambda 0.75 R: 2,733.38

I: -

T: 2,733.38

R: 2,551.86

I: 0

T: 2,551.86

R: 2,511.82

I: 0

T: 2,511.82

R: 2,503.50

I: 0

T: 2,503.50

R: 2,503.50

I: 37,452

T: 39,955.50

Lambda 1.0 R: 2,733.38

I: -

T: 2,733.38

R: 2,551.86

I: 0

T: 2,551.86

R: 2,511.82

I: 0

T: 2,511.82

R: 2,503.50

I: 0

T: 2,503.50

R: 2,503.50

I: 49,936

T: 52,439.50

Table 18 Overview results for deterministic Series of Tests

As can be noted the routing costs are similar for every stock cost rate λ, since the inventory

costs are computed based on the previously set inventory levels and thus do not influence the

routing process. Only in p = 1.0 arise stock costs. Also notable is: the lower the inventory level,

the higher the routing costs as should be expected. This validates the developed algorithm.

4.3.2.2 Stochastic Series of Tests

The stochastic computation is based on a series of trials to determine a number of customers

with which the program can run and produce a sufficient number of feasible solutions. This

51

series of trials was conducted previous to the actual testing. The trial runs led to the following

inputs.

• The number of customers is set at i = 20.

• The number of depots is set at d = 3.

• The number of warehouses is set at k = 1.

• The fixed set up costs for sending one vehicle on one route amount to 110 monetary

units for the small, 120 for the medium and 130 for the large vehicle.

• There is no set maximum distance for any employed vehicle.

• The variable distance-based costs are set at 0.5 monetary units per unit of length.

• The numbers of products is set at n = 4.

The complete customer inputs for this series of test are listed in Annex 5. In the following Table

19 the depot inputs are displayed.

Depot ID X-Coordinate Y-Coordinate

Capacity

Product 1

Capacity

Product 2

Capacity

Product 3

Capacity

Product 4

101 29 21

2 ∗SS(./)*+0 = 	*+)
+

U

*

U
∗ ���
(�7��T 102 154 19

103 64 62

Table 19 Inputs Depots Stochastic Code

The capacities of the depots are computed based on the accumulated estimated customer

demand that occurs in every sub-map. Every sub-map is associated with one depot and a

number of customers assigned to it. The number of depots and the single customers vary at

every iteration of the program. During the testing with stochastic value the estimated customer

demand is computed based on a known probability distribution with ./)*+0 = 	*+ > 0. The

approach of doubling the expected customer demand for setting the inventory capacity of one

depot serves to assure the fulfillment of 100% of customer demands with stochastic values.

Three different variances are tested determining a low, medium and high variance scenario as

described in chapter 4.3.1. The estimation of customer demands serves to simulate and

determine the refill policy with the lowest overall cost. The multiplication of all factors

determines the inventory level for every product of every depot. The considered policies are

again set at p = {0.0, 0.25, 0.5, 0.75, 1.0} and the stock cost rate at lambda λ = {0.01, 0.25, 0.5,

0.75, 1.0}. The number of the depots’ vehicles and associated capacities and number of

compartments remains, the values can be looked up in chapter 4.2.2.

The warehouse is described with its ID and the x- and y-coordinate in Table 20.

52

Warehouse ID X-Coordinate Y-Coordinate

24 60 36

Table 20 Warehouse Inputs Final Stochastic Test

For the computation of results the run time was set at 45 min for every one of the 15 tests due to

no improvement of previously computed solutions between minute 45 and 60 during the run

time and the number of tests to be performed. The number of computed solutions ranged

between 1,000 and 5,000.

For the stochastic testing the best solution policies for every depot and the best solution

routing and stock costs for every sub-map are calculated and listed according to the different

stock cost rates and variances. The results are displayed in the following Table 21. P stands for

the policies set as best ones for depot 1, 2 and 3 in the simulated scenario.

Variance 0.25 Variance 0.5 Variance 0.75

Lambda 0.01 P: 0.5; 0.5; 0.5

R: 1,401.35

I: 1,186.15

T: 2,587.50

P: 0.5; 0.5; 0.5

R: 1,423.37

I: 1186,15

T: 2,609.52

P: 0.5; 0.5; 0.5

R: 1,391.91

I: 1,186.15

T: 2,578.06

Lambda 0.25 P: 0.5; 0.5; 0.5

R: 1,401.35

I: 29,653.75

T: 31,055.10

P: 0.5; 0.5; 0.0

R: 2,011.70

I: 14,044.25

T:16,055.95

P: 0.5; 0.5; 0.0

R: 2,540.28

I: 7,869.00

T: 10,409.28

Lambda 0.5 P: 0.5; 0.5; 0.0

R: 1,605.51

I: 15,738.0

T: 17,343.51

P: 0.0; 0.5; 0.0

R: 1,850.70

I: 15,738.00

T: 17,588.70

P: 0.0; 0.5; 0.0

R: 1,858.07

I: 15,738.00

T: 17,596.07

Lambda 0.75 P: 0.0; 0.5; 0.0

R: 1,841.69

I: 23,607.00

T:25,448.69

P: 0.0; 0.5; 0.0

R: 1,850.70

I: 23,604.00

T: 25,457.70

P: 0.0; 0.0; 0.0

R: 1,765.09

I: 0.0

T: 1,765.09

Lambda 1.0 P: 0.0; 0.5; 0.0

R: 1,841.69

I: 31,476.00

T: 33,317.69

P: 0.0; 0.0; 0.0

R: 1,820.07

I: 0.0

T: 1,820.07

P: 0.0; 0.5; 0.0

R: 1,841.69

I: 31,476.00

T:33,317.69

Table 21 Overview results for stochastic Series of Tests

The results are summarized in Figure 20 and Figure 21. Figure 20 displays the proportions of

routing and inventory costs for all variances and stock cost rates.

53

Figure 20 Proportions of Stochastic Routing and Inventory Costs

The results reflect the costs adequately, the higher the stock cost rate λ, the higher the overall

inventory cost. Furthermore, in the case of p = 0.0 in all depots, no inventory costs are incurred

or if one or two depots out of three have an inventory set at p = 0.0, so the overall inventory

costs are lower respectively. It needs to be considered though that the individual proportions of

inventory to routing costs are not useful in the most cases in Figure 20. The inventory ratio

exceeds the routing ratio by far.

The results of the inventory costs with different variance levels become more balanced and

predictable, the higher the variance is set. While at k = 0.25 the inventory costs are fluctuating

strongly, at k = 0.75 the inventory costs rise consistently with the increase of λ. This contradicts

the assumption of creating a highly unbalanced scenario by increasing k. On the other hand the

sample size from which the results were computed may not be sufficiently large to reflect the

outcome of different variance scenarios.

Further analysis on the set inventory levels led to the results displayed in Figure 21.

0

5000

10000

15000

20000

25000

30000

35000

0
.0

1

0
.2

5

0
.5

0
.7

5

1
.0

0
.0

1

0
.2

5

0
.5

0
.7

5

1
.0

0
.0

1

0
.2

5

0
.5

0
.7

5

1
.0

k = 0.25 k = 0.5 k = 0.75

Inventory

Routing

λ

54

Figure 21 Comparison of Customer Demand and Inventory Levels

It shows a high discrepancy between the accumulated mean customer demand and the related

inventory levels per product. The algorithm should set the inventory level according to the

estimated customer demands with a given mean and a variance. This process is not performed

correctly and leads to high stock costs.

In Figure 22 the proportions of routing costs of different stock cost rates and variances are

displayed.

Figure 22 Routing Costs Stochastic Solution

The routing costs and their proportions are displayed separately for further analysis. As should

be expected, the routing costs rise with a higher stock cost rate due to more refill stops at the

warehouses leading to longer distances driven by the used vehicles. It can be noted that in the

0

10000

20000

30000

40000

50000

60000

70000

80000

1 2 3 4

Accumulated Customer
Demand

Inventory Levels

0

500

1000

1500

2000

2500

3000

0.01 0.25 0.5 0.75 1.0 0.01 0.25 0.5 0.75 1.0 0.01 0.25 0.5 0.75 1.0

k = 0.25 k = 0.5 k = 0.75

λ

55

higher variance scenarios, the routing costs are not balanced and predictable as in the low

variance scenario. This is what can be expected with the given initial situation of variances.

4.3.3 Risk Analysis

Risk analysis is a way of assessing the risk linked to acting a pre-defined way. To achieve the

risk that is connected to a certain course of action, simulation of different scenarios and a

comparison of the outcome is a possibility with reasonable results.

The risk analysis is performed for the deterministic solution as well as for the stochastic

solution.

The risk analysis for the deterministic code is based on the results displayed in Table 18.

Due to the size of the inventory costs that only arise when applying p = 1.0, only the routing

costs are considered and analyzed. The ratios of routing costs associated with every policy are

displayed in Figure 23.

Figure 23 Routing Costs of the deterministic Solution

It should be noted that even though p = 0.75 and p = 1.0 have the lowest routing costs, p = 1.0

has high inventory costs and exceeds all other policies’ costs. Thus in this scenario the best

option would be choosing the p =0.75 without stock costs and the lowest routing costs.

The risk analysis for the stochastic code is based on the results displayed in Table 21. The mean

of the accumulated overall costs for every variance scenario build the base for the boxplot

displayed in Figure 24. It contains a logarithmic trendline, following the underlying probability

distribution. The boxplots are displayed for every variance scenario with the overall computed

costs. The figure is not an instrument in a decision-making process but can be used to quantify

the costs associated with a known variance.

2350

2400

2450

2500

2550

2600

2650

2700

2750

2800

0.0 0.25 0.5 0.75 1.0Policies

56

Figure 24 Boxplot of the Stochastic Results

The grey bars represent the median of every variance scenario. As can be noted, the costs in a

low variance scenario are about double compared to the other scenarios. When comparing the

scenarios with the variances 0.5 and 0.75, the overall costs seem to be similar but the median of

the 0.75 variance scenario is lower and thus is the most beneficial scenario.

This result contradicts the assumption that the higher uncertainties, the higher the cost due

to less assessability of customer demands.

The algorithm determined a varying mix of p = 0.5 and p = 0.0 as best solutions, depending

on the stock cost rate. To decide for a refill policy, Figure 20 clearly indicates the lowest costs

when no stock exists. But the risk connected to no inventory while having stochastic customer

demands that need to be fulfilled 100% every period is substantial. The fluctuations can lead to

insufficient transport capacities, route failures and thus high costs. The policy p = 0.0 is only

realistic to be implemented when the customer demands can be quantified very accurately to

prevent high out-of-stock-costs or high inventory costs.

4.3.4 Outlook

The program is not further developed in the present work but possibilities on advancing are

given in this chapter to determine components that can be improved to produce better results.

As described in the analysis of the stochastic code, the inventory levels do not reflect the

customer demand and lead to excessive stock costs due to high and unnecessary inventory

levels. The calculation of customer demands in the program is performed correctly as has

already been reviewed so the setting of the new inventory levels in the single depots seems to be

incorrect. This can be corrected but it was not possible in the present work as it would have

0

5000

10000

15000

20000

25000

30000

35000

0.25 0.5 0.75

57

exceeded the given time frame. Then, additional simulation runs can serve to determine the

advantage of using a safety stock. This approach would be interesting in combination with a

multi-period IRP to determine the most advantageous point (in time or inventory amount) of

replenishing the inventory. Especially when doing research in the field of delivering gas, fuel

and other liquids of this kind, one approach to accomplish more precise forecasts for

replenishment strategies is installing measuring devices in the customers’ tanks. This way, when

a pre-determined filling level is reached, the device signals this to the supplier and the

customer’s inventory can be replenished. Another approach could be to install a device that

exactly documents the filling level of a tank at all times. Thus, when planning routes, it can be

considered to supply customers without immediate need for the product but with a sufficiently

empty tank, that are located along the route. This way routing costs could be saved.

In the final implementation the stochastic customer values are computed once and are then

set for the whole simulation process. This can be changed to vary the customer demands to be

different at every iteration of the program.

Another feature that would make the program more realistic is introducing a fee for

products purchased at the warehouse when the inventories at the depots are not sufficiently

stocked. This would change cost calculations because including a trip to the warehouse so far

only included the additional distance costs. In a realistic scenario an additional product purchase

concludes additional costs.

As mentioned in previous outlooks, the inclusion of time windows is not performed in the

present work but would make the approach even more realistic. The complexity of including

time windows in the algorithm though exceeds the given time frame. The specifying of

maximum distances for vehicles with the inputs however can serve as an instrument to model

approximate time windows. This can be conducted when the mean travelling speed between

different locations is known.

The possibility of inserting exact distances is provided in the final code while maintaining

the possibility of applying Euclidean distances with provided locations in a coordinate system.

A disadvantage in the final code though is the necessity of inserting the exact distances

manually between all locations on the employed map. When dealing with realistic scenarios, a

set goal of the present work, it is inevitable to implement a tool that can provide exact distances

between locations automatically. Otherwise, when inserting the exact distances, the necessary

number of distances between locations would be n!. In a system of 1,000 customers and more,

this is not applicable in a reasonable time frame.

As described in the previous outlook, an improvement for a higher level of simulation, the

selection of the warehouse and its placement in a route can be biased randomized for achieving

better routing results and thus lower overall costs.

58

5 Technical Description of the Final Code

This chapter aims at giving a detailed overview of the developed code’s functionalities and its

scope. The final code consists of seven packages (main, algorithm, data, map, models, plot and

RCWS) with 30 classes. The classes were written and modified by Enoc Martinez, Gabriel

Alemany and Lena Pfeilsticker.

When parts of the code are shortened, ‘…’ indicates an exclusion of code.

5.1 Input

Two input files are necessary to run and test the code. The first file (test2run) includes the

memory location of the test to run and several parameters. An example of the file is given in

Figure 25.

name|beta|savingParam|roundRobinFraction|seed|time
test 0.3 0.7 1.0 20213 60

Figure 25 Input files Part I

The first line describes the values in the following. The variable ‘name’ indicates the file which

contains the input for the tests. The variables ‘beta’ and ‘savingParam’ are passed to the class

‘RNG’ of the package main. They are used to determine the geometrical distribution for the

computation of the solutions of the mapping and routing procedures in the method

‘getNextIntGD(int n, double beta)’ as displayed in Figure 26.

 public static int getNextIntGD(int n, double beta) {
 int pos;
 double d = _rng.nextDouble();
 pos = (int)(Math.log(d) / Math.log(1 - beta));
 pos = pos % n;
 return pos;
 }

Figure 26 Public Method ‘getNextIntGD’ of class ‘RNG’

In this work a lognormal distribution is employed.’ _rng‘ is an instance of the class ‘Random’,

which is used to generate a stream of pseudorandom numbers.

The result of calling the method ‘getNextIntGD(int n, double beta)’ during each mapping or

routing procedure is the determination of the distribution’s width which translates to the amount

of computable different solutions. More precisely, the bigger ‘beta’ or ‘savingParam’ are, the

lower the variance of solutions, so the range of computed solutions is smaller. This leads to a

usage of the same solutions with a higher frequency and this to a lower number of possible

59

combinations of mapping and routing options. So the search space is not explored

comprehensively but leads to feasible solutions in a shorter time because the program does not

need as much time to explore possible solutions. But in case no or few solutions are found,

‘beta’ and ‘savingParam’ should be lowered in order to widen the search space. Simultaneously

the program’s run time should be extended due to a higher amount of possible solutions.

The variable ‘roundRobinFraction’ in Figure 25 is used during the assignment step and

indicates the proportion of a vehicle’s load that has to be assigned in phase 1 of the round-robin

process. In other words, it describes the process of assigning the equitative theoretical load of

every sub-map multiplied with the variable ‘roundRobinFraction’ during phase I of the

assignment of customers to depots. To finish the assignment step in phase 2, the remaining

customers are assigned based on the highest overall capacity left in the comparison of all

available depots.

The variable ‘seed’ in Figure 25 serves to simulate the stochastic behavior of a distribution

in a program. When simulating stochastic distributions in a program to compute random

numbers however, the computed values are not stochastic due to computer systems being

deterministic machines. For this reason a (pseudo-)random number RNG is employed to model

stochastic behavior. The given seed is a number used to initialize the RNG. It starts with an

initial seed, an integer number defined previously to the simulation runs. From this seed, a

function creates a stream of ‘random’ values. Using the same seed value always computes the

exact same stream of numbers. Due to this it is a pseudo-random number generator. A sample of

a distribution uses one or more numbers from the stream to compute its value. The value of the

initial seed thus decides the value of all samples drawn in the simulation. At the end of the

simulation, the used initial seed of that simulation is printed for reference purposes.

During the conducted case studies the variables ‘beta’, ‘savingParam’,

‘roundRobinFraction’ and ‘seed’ have not been changed during individual series of tests. The

experiments on the variables’ impact on calculated results was not closely investigated since the

focus was on other factors.

The last variable‘time’ given in Figure 25 describes the time in seconds and determines the

run time the program can use to compute solutions.

 The second input file is constructed as displayed exemplary in Figure 27.

60

customers|depots|WH|diffProducts|diffVehicles|distType|Variance k|stock
cost lambda
6 3 1 4 3 0 0.25 0.1
vehicle id|set-up costs|var cost rate|WH able|max dist|compartm cap 1 to n
1 110. 0.5 0 0. 2000 2000
2 120. 0.5 1 0. 5500 5500
3 130. 0.5 1 0. 6000 10500 13500
customer id|x|y|demands product 1 to n
01 61 09 892 329 0 337
02 71 09 656 201 588 542
03 80 09 589 681 704 922
04 90 08 0 54 912 291
05 162 06 761 210 732 318
06 73 81 335 744 289 840
depot id|x|y|inventory product 1 to n|no of diff veh. types|no of type|type
07 29 21 15000 15000 15000 15000 2 7 1 7 2
08 154 19 15000 15000 15000 15000 2 7 1 7 2
09 64 62 25000 25000 25000 25000 2 7 1 5 3
warehouse id|x|y
10 60 36

Figure 27 Input files Part II

This is the input file named as indicated with the first variable in the first input file. The lines

starting with ‘#’ are skipped in the code and only serve as comment lines for the following

values. In the first line the number of customers, the number of depots, of warehouses, number

of different products, the distance type, the number of different vehicles, the variance for the

distribution function and the stock cost rate λ are defined.

Every vehicle type used is described in an extra line. Each one is given its ID, the set-up

costs, the variable cost rate, if it can drive to the warehouse or not, the maximum distance it can

cover in one period and the number of compartments with their individual capacities. If a

vehicle is able to drive to the warehouse is indicated with 1 = yes or 0 = no. The maximum

distance of a vehicle is a float value. If it is without value (0.) no maximum distance level is

given and the vehicle can drive unlimited ways per period. The number of compartments is

indicated with the number of different compartment capacities e.g., (2000, 2000) indicates two

compartments with a capacity each of 2,000 units.

Customers are described in a similar pattern. For every customer their ID, their location in a

coordinate system (x|y) and the size of their demand for every product are printed in one line.

For every depot exists a line in the input file including their ID, their location (x|y), the

inventory level for every product, the number of different vehicle types, the number of the first

type, the assigned vehicle type ID and the number of the last type and the assigned vehicle type

ID, i.e., in line 07 the numbers “2 7 1 7 2” describe the depot having two different types of

vehicles, 7 of type 1 and 7 of type 2.

In the last lines the warehouse IDs and their locations (x|y) are given.

61

5.2 Computer Operations

As previously described the program consists of seven packages with 30 classes. In the

following the different packages’ functionalities are described.

Package Main: This package contains the class ’RNG’ and the class ’TestsRunner’ with the

main method.

The class ‘RNG’ manages the random behavior of the program. More precisely the class

contains several methods to compute random numbers based on geometrical or uniform

distributions. For this purpose a RNG is employed, in this work an instance of the class

‘Random’. It is used to generate a stream of pseudorandom numbers.

The class ‘TestsRunner’ plays a central role in the program. It contains the main method

and amongst others uses the instances of the classes ‘Algorithm’ and ‘Solution’ that call all

methods used to compute the solution. It scans the inputs and provides the data for the output.

Package Algorithm: This package contains the classes ’Algorithm’ and ’SubAlgorithm’. The

instance of the class ‘Algorithm’ is instantiated and used by the main method and contains the

method solve() which contains the whole solving process. It plays a central role in the running

of the code and thus is described in detail. It was written by Enoc Martinez and extended by

Gabriel Alemany and Lena Pfeilsticker.

First all savings for the depots are computed, based on the distances calculated in the main

method of the class ‘TestsRunner’. This process is displayed in Figure 28.

// 1. Compute savings for depots (PRELIMINARY)
 Savings savings = MapTools.calcDepotSavings(input);

Figure 28 Computing Savings for Depots

Afterwards a MS process is started with a given run time to compute solutions. This contains

generating a map assignment of customers to depots based on the generated savings. Then the

method ‘calculateRefillPolicies()’ gets the expected demand for every depot and calculates the

best inventory policy with lowest overall costs out of a given number of different policies for

every depot assuming stochastic customer demands. The calculation is based on the

minimization of stock and routing costs. These steps are performed in the instance of the class

‘SubAlgorithm’ (written by Lena Pfeilsticker). In Figure 29 the process is displayed with the

core methods.

62

// 2. Multi Start Process
…
 // 2.1 Generate map assignment

 CompleteMap map = genRandAssignmentMap(nodes, depots, savings);

 //2.1.1 Get expected demand for every depot
 …
 //2.1.2 Calculate policy with the lowest overall costs for each depot
 SubAlgorithm subAlg = new SubAlgorithm(input, map);
 subAlg.calculateRefillPolicies();
 …

Figure 29 Multi-Start Process Part I

Then each map is solved applying a biased randomized CWS heuristic. Subsequently the total

costs of routing and stock are computed. The amount is compared to the variable ‘bestSol’

which represents a type of cache and saves the best computed solutions of the program. The

variable ‘bestSol’ is updated when a new best solution is found and printed as overall minimal

cost found in the given time frame.

The variable ‘bestSolDepots’ contains a list of all depots and saves their properties’ values

whenever a new best solution is found. It enables to print out the values of every depot of the

best found solution, e.g. the inventory levels. This process is displayed in Figure 30.

 // 2.2 Solve each map
 …
 SubSol partialSol = biasedRandRichCws(sm, input);
 …
 //Calculate total costs of routing and stock
 newSol.CalcTotalCosts(map);

 // 2.3 Compare with bestSol
 …
 if (bestSol == null || newSol.getTotalCosts() <
 bestSol.getTotalCosts()) {
 bestSol = newSol;
 bestSolDepots = in.getDepots();
 …
 }

Figure 30 Multi-Start Process Part II

The method ‘biasedRandRichCws(Submap sm, Inptut input)’ creates a sub-solution for every

sub-map consisting of routes to supply all customers in one sub-map. First all customers are

converted into several sub-customers, equal to the number of demanded products. Then the

routing procedure is performed with the sub-customers. Afterwards the sub-customers are

converted back into the original customers again. This serves to enable the visit of one customer

by more than one vehicle und simplifies the implementation in the code. This process is

displayed in Figure 31.

63

 private SubSol biasedRandRichCws(SubMap sm, Input input) {
 List<Vehicle> vehicles = sm.getDepot().getVehicles();
 Random rng = test.getRng().getrng();
 …
 // Create a list with one sub-customer for each customer's demand of
 products

 List<SubCustomer> subcustomers = customers2subCustomers(sm);
 List<Route> goodRoutes = new LinkedList<Route>();
 …
 // Convert the SubCustomers route to a Customers one
 r = subcustomers2customers(r);
 goodRoutes.add(r);

 return constructSubSolution(goodRoutes, sm, input.getDiffProduct());
 }

Figure 31 Routing for sub-customers

As previously described, the round-robin process of assigning customers to depots is split into

two phases. The variable ‘roundRobinFraction’ is used to determine the amount of every depot

capacity that is assigned in the first phase of the round-robin process. When the amount of

capacity to be assigned is reached, phase two starts and chooses sub-maps with higher capacity

levels over others. This process is displayed in Figure 32.

double factor = test.getfRoundRobin() * (double)input.getTotalDemand() /
(double)input.getTotalVehCapacity();
…
// Phase I: Round-Robin until all submaps reach their
// equitative theoretical load multiplied by parameter roundRobinFraction
…
 Collections.sort(subMapList0); // By capacity in depot vehicles
 …
 boolean isLastNodeOfDepot = mapper.assignBestNode(sm, nodes);
 if (isLastNodeOfDepot) {
 subMapList0.remove(sm);
 subMapList.remove(sm);
 } else
 if (sm.sumOfAllStatus() > factor *
 sm.getSumOfAllVehCapacitys())
 subMapList0.remove(sm);
 …
// Phase II: priorization of submaps with the highest transport capacity left
…
 Collections.sort(subMapList); // By free capacity in depot vehicles
 boolean isLastNodeOfDepot = mapper.assignBestNode(sm, nodes);
 …

Figure 32 Assignment with a (capacitated) Round-robin process

The other class of the package algorithm is ‘SubAlgorithm’. It is used and instantiated by the

instance of ‘Algorithm’ and serves to generate stochastic demands for setting the best inventory

policy for each depot. The generation of the stochastic demands is performed independently of

64

the generation of the individual stochastic customer’s demands. When planning the vehicle load

before the routing process, a planner cannot know the exact demand but has to anticipate the

total customer demand based on a distribution. For this a lognormal distribution is used as

described in chapter 4.3.1 and the stochastic demands are calculated for every sub-map. This

process is depicted with the code as displayed in Figure 33. It is based on the cumulated

expected demand of all products and customers as mean value . (variable ‘mean’ in Figure 33),

the calculation of the variance XY (variable ‘sigma’ in Figure 33) and the expected value R

(variable ‘mu’ in Figure 33). They are defined as follows:

XY = ln	(���.Y + 1)

R = ln(.) − X
Y

2

The variance and the expected value are those of the normal distribution. It can be applied to a

lognormal distribution when the mean value and the required variance of it are known. Thus the

variable ‘var’ in Figure 33 designates the variance of the lognormal distribution while ‘sigma’

refers to the variance of the normal distribution.

The value of ‘var’ is calculated using the mean and the variable ‘k’ that is passed to the

program with the inputs. With the instances of the classes ‘Distribution’ and

‘RandomVariateGen’ a random number of a lognormal distribution is created with the given X

and R. The instance ‘stream’ is based on a stream of random numbers. This enables the use of

the instance ‘rngLogN’, of the class ‘RandomVariateGen’, to generate a random expected

demand.

 …
 // 1.1. Set the random distribution for this depot.
 double mean = aDepot.getExpDemand();
 double var = in.getK() * mean;
 double factor = Math.log(1 + var / (mean*mean));
 double mu = Math.log(mean) - 0.5 * factor;
 double sigma = Math.sqrt(factor);
 Distribution dist = new LognormalDist(mu, sigma);
 RandomVariateGen rngLogN = new LognormalGen(stream, (LognormalDist)
 dist);

Figure 33 Generate a Stochastic Total Customer Demand

During the next step a number of simulation runs is performed based either on a given run time

or a number of iterations.

In the following, to calculate the best policy, the maximum capacity of every depot is set at

double the cumulated overall expected demand of a sub-map. The code also allows setting a

current level of all products for every depot but this feature is not used for the tests in this work.

The arrays ‘policiesByRefill’ and ‘policiesByCosts’ are set with new arrays of policies that

are filled in with the same values at the beginning. The array ‘policiesByRefill’ is used to

calculate the different policies to be tested and assigned to the various depots. The policies are

calculated in a for-loop. The values can be changed as required and at this stage only are

exemplary calculated. This process is displayed in Figure 34.

65

 // 1.2. Perform simulation runs.
 long start = ElapsedTime.systemTime();
 double elapsed = 0.0;
 int nSimIter = 1000000; //can be used with time instead of number of
 iterations

 maxCap = 2 * (aDepot.getExpDemand()); //sets max cap of a depot to
 double the expected demand
 currentLevel = maxCap; //interchangeable to preset level
 policiesByRefill = new Policy[numberOfPolicies];
 policiesByCosts = new Policy[numberOfPolicies];
 for(int h = 0; h < numberOfPolicies; h++)
 {
 policiesByRefill[h] = new Policy(maxCap, h * 0.25f,
 currentLevel * h * 0.25f);
 policiesByCosts[h] = policiesByRefill[h];
 }

Figure 34 Class ‘SubAlgorithm’: Perform Simulation Runs

A random demand is calculated as described previously and is used to calculate the total surplus

and stock costs associated with every inventory refill policy. In Figure 35, the commented out

calculation of surplus is used when an inventory has already a current level that is filled up to

the associated inventory level. Since this is not the case, the surplus is calculated simply based

on the amount of product in the depot’s inventory minus the generated random demand. So the

surplus is calculated based on the amount of products left in the inventory at the end of the

period. The stock costs are computed based on lambda, determined in the input files, or based

on the costs of a roundtrip to the warehouse to replenish the depot inventory. This is a basic

assumption but serves the purpose of evaluating the difference in occurring costs. The costs can

be easily modified and adapted to other scenarios.

In the code in 1.3 the computed stock costs and the surplus is divided by the number of

reruns of the for-loop and the mean values are saved for every policy since they were

accumulated. These calculations are displayed in Figure 35.

66

 for(int j = 0; j < nSimIter; j++)
 {
 // Generate random demand.
 float randomDemand = (float) rngLogN.nextDouble();
 // Compute accumulated surplus and stock costs.
 for(Policy p : getPoliciesByRefill())
 {
// float surplus = p.getUnitsToServe() + getCurrentLevel() - randomDemand;
// This calculation has to be used when the current inventory levels of
// depots are taken into consideration.

 float surplus = p.getRefillUpToUnits() - randomDemand;
 p.setExpSurplus(p.getExpSurplus() + surplus); // accum. surplus

 double stockCosts;
 if(surplus >= 0)
 stockCosts = in.getLambda() * surplus;
 else
 stockCosts = aDepot.getRoundtripToWarehouseCosts();

 p.setExpStockCosts(p.getExpStockCosts() + stockCosts);
 // accum. stock costs
 }
 }
 elapsed = ElapsedTime.calcElapsed(start, ElapsedTime.systemTime());

 // 1.3. Compute expected surplus and stock costs.
 for(Policy p : getPoliciesByRefill())
 {

p.setExpSurplus(p.getExpSurplus() / nSimIter);//calc. mean value
p.setExpStockCosts(p.getExpStockCosts() / nSimIter); //divide by
number of iterations, needs tob e changed when elapsedTime is
employed

 }

Figure 35 Calculate expected Surplus and associated Stock Costs for every Depot

Then the computed policies are sorted by costs for every depot and individually set as the best

policy. The stochastic expected demand is divided into four products by applying the previously

computed product key. Then the inventory levels as set by the values in the input files are

replaced with the inventory levels for every product as associated with the best computed

policy. These processes are displayed in Figure 36.

67

// 1.4. Sort policies by Costs for every Depot (policiesByRefill will not
 be modified).
 Arrays.sort(getPoliciesByCosts()); //ascending order, best solution is
 on position 0

 //1.5 Set best policy for every Depot
 aDepot.setBestSolPolicy(policiesByCosts[0]);

 //1.6 Apply bestPolicy to every Depot and then apply productKey
 aDepot.calculateProductKey(aSubMap);

 //1.7 Overwrite inventory level for every product of every Depot in
 corresponding sub-map
 int[] productKey = aDepot.getProductKey();
 int productKeyTotal = 0;
 int[] productsCapacity = new int[productKey.length];
 for(int o = 0; o < productKey.length; o++){
 productKeyTotal += productKey[o];
 }
 //1.7.1 Set new level for every product by applying productKey to
 maxCap*best policy percentage

 for(int r = 0; r < productKey.length; r++){
 productsCapacity[r] = ((int)Math.ceil(maxCap) *
 (int)Math.ceil(aDepot.getBestSolPolicy().getRefillUpToPercent())
 * productKey[r]) / productKeyTotal;
 }

 aDepot.setProductsCapacity(productsCapacity);
 }
}

Figure 36 Setting a new Inventory Level for every Product of every Depot

Package Data: This package contains the classes ’Input’, ’Solution’ and ’SubSol’. It serves to

process the inputs and outputs of the program.

The class ‘Input’ is instantiated with the input as scanned in ‘TestsRunner’ of the main

package as a parameter. The instance also contains the method ‘createStochasticInputs()’ to

generate stochastic customer demands. This method was written by Lena Pfeilsticker. It is

displayed in Figure 37. The process is similar to the one in the class ‘SubAlgorithm’ of package

‘algorithm’. This serves to employ the similar probability distribution for both the calculation of

customer demands and the expected demands of the depots in order to be able to compare them.

The method replaces the inputs from the input files with new values based on the lognormal

distribution with the given variance k. This step is only performed once and customer demands

are set for all following calculations.

68

 public void createStochasticInputs(){

 Iterator<Customer> iter = getNodes().iterator();
 for(int i = 1; i < nodes.size(); i++)
 { Customer aCustomer = iter.next();
 int[] productDemands = aCustomer.getProductDemands();

 for (int prod = 0; prod < diffProduct; prod++){
 double mean = productDemands [prod];
 double var = getK() * mean;
 double factor = Math.log(1 + var / (mean*mean));
 double mu = Math.log(mean) - 0.5 * factor;
 double sigma = Math.sqrt(factor);
 Distribution dist = new LognormalDist(mu, sigma);
 RandomVariateGen rngLogN = new LognormalGen(stream,
 (LognormalDist) dist);

 // Generate random demand.
 int randomDemand = (int) rngLogN.nextDouble();
 productDemands [prod] = randomDemand;
 }
 aCustomer.setProductDemands(productDemands);
 }

Figure 37 Generating Stochastic Customer Demands

The class ‘Solution’ contains the routing costs and the stock costs as properties and the method

‘calcTotalCosts(CompleteMap map, Input input)’, written by Lena Pfeilsticker. The method

adds up the routing and stock costs for all depots and customers. It is displayed in Figure 38.

The routing costs consist of the total costs in former code versions. The stock costs consist of

the total demand of every customer multiplied with the stock cost rate lambda.

 public void calcTotalCosts(CompleteMap map, Input input){
 for(int i = 0; i < map.getSubMaps().size(); i++)
 { SubMap aSubMap = map.getSubMaps().get(i);
 Depot aDepot = aSubMap.getDepot();
 stockCosts += aDepot.getBestSolPolicy().getRefillUpToPercent() *
 aDepot.getExpDemand() * 2 * input.getLambda();
 }
 totalCosts = routingCost + stockCosts;

 }

Figure 38 Method to calculate the total Costs

The class ‘SubSol’ manages the the sub-maps.

Package Map: The package ‘map’ contains the classes ‘CompleteMap’, ’MapTools’, ’Savings’

and ’SubMap’. It manages the maps and sub-maps of the program. A complete map consists of

all built sub-maps and the class ’CompleteMap’ inherits a list of sub-maps as property.

In the class ’MapTools’ a distance matrix of all customers, depots and warehouses is

created. Its instance can also be used to find the closest located nodes to all locations on the map

69

and to calculate the savings for all customers to all depots. The method

‘calcDepotSavings(Input input)’ enables the user to choose between the calculation of

Euclidean distances between map locations or the determination of exact distances via the used

parameter ‘input’. Then the consecutive approached customers are determined based on the

highest savings of the distance matrix. The method ‘calcDepotSavings(Input input)’ is displayed

in Figure 39.

 public static Savings calcDepotSavings(Input input) {

 if (!input.isEuclideanDistance())
 distanceMatrix = input.getDistances();
 else
 distanceMatrix = distances(input);

 final float[][] savings = savings(input);
 // fill nodes neighbors
 neighbors(input, savings);
 Savings svg = new Savings(distanceMatrix, savings);

 return svg;

 }

Figure 39 Calculating Depot Savings in MapTools

The class ’Savings’ contains methods to calculate savings between different customers and

depots.

The class ’SubMap’ enables the program to determine the assignment of customers to

depots and the demand that needs to be fulfilled for every product per depot.

Package Models: The package ‘models’ contains the classes ’Customer’, ’Delivery’, ’Depot’,

’ElapsedTime’, ’Node’, ’Policy’, ’SubCustomer’, ’Test’, ’Vehicle’, ’VehType’ and

’Warehouse’. It models all items in the given problem. All items contain their assigned

attributes as described in the problem description and several methods to modify them. The

class ‘Depot’ was modified by Lena Pfeilsticker to include variables and methods to include

inventory levels for every product, to calculate the expected demand, to calculate a product key

and a method to calculate the distance to the next warehouse. They are displayed in Figure 40.

The expected demand is used to generate a stochastic value for estimating the best inventory

policy (see class ’SubAlgorithm’ in package ’algorithm’).

The method ’calculateProductKey(SubMap subMap) ’ cumulates all customer demands

assigned to a sub-map, divided into all products, and enables the program to divide the

calculated stochastic expected demand into the share of products as it was before the

accumulation for the expected demand.

The method ’calculateDistanceToNextWarehouse(Input input, int numDepot)’ is used when

deciding about which warehouse a depot gets products from for determining the best inventory

policy. In the given problem in the present work the number of warehouses is one but the

program is aimed to be adaptable to different scenarios and thus this method was implemented.

70

 public void calculateExpDemand(SubMap subMap)
 {
 expDemand = 0;
 Iterator<Delivery> iter = subMap.getDeliveryNeeds().iterator();
 while (iter.hasNext()){
 Delivery i = (Delivery)iter.next();
 expDemand += i.getCustomer().getTotalDemand();
 }
 }

 public void calculateProductKey(SubMap subMap){
 productKey = new int[getDiffProducts()];
 Iterator<Delivery> iter = subMap.getDeliveryNeeds().iterator();
 while (iter.hasNext()){
 Delivery m = (Delivery)iter.next();
 for(int i = 1; i <
 m.getCustomer().getProductDemands().length; i++){
 productKey[i] += m.getCustomer().getProductDemands()[i];
 }
 }
 }

 public void calculateDistanceToNextWarehouse(Input input, int numDepot){
 int warehouses = input.getNumWarehouses();
 int depots = input.getNumDepots();
 int nodes = input.getNumNodes();
 float[][] distances = input.getDistances();
 float[] distancesToWarehouses = new float[warehouses];
 for (int j = 0; j < warehouses; j++) {
 distancesToWarehouses [j] =
 distances[numDepot+nodes][j+nodes+depots];
 }
 Arrays.sort(distancesToWarehouses);
 setRoundtripToDepotCosts(distancesToWarehouses[0]);
 }

Figure 40 Methods in class ‘Depot’

The class ‘ElapsedTime’ is used to calculate the time during different methods of the program.

The class ‘Policy’ was written by Lena Pfeilsticker based on the code of Juan et al. (2014a).

It calculates the possible inventory policies and the possibility to compare different ones.

Additionally it holds the possibility of setting a current inventory level for the depots. In this

work this functionality is not applied but can be used to make a scenario more realistic. This

process is displayed in Figure 41.

71

 public Policy(float maxCap, float percent, float currentLevel)
 {
 refillUpToPercent = percent;
 refillUpToUnits = percent * maxCap;
 unitsToServe = Math.max(0, refillUpToUnits - currentLevel);

 }

Figure 41 Constructor ‘Policy’

The class ‘SubCustomer’ manages all attributes associated with the sub-customers. They are

constructed virtually to simplify the routing process as previously described in the

corresponding solving process. For the final solution all sub-customers of the similar locations

are re-combined to form a customer again.

The class ‘Test’ manages the file determining the test(s) to run in the program.

Package Plot: The package ‘plot’ serves to display the calculated best solution in a graphic and

consists of the classes ’InstancePlot’ and ’InstancePlot1’.

Package RCWS: The package ‘RCWS’ is short for randomized CWS heuristic and consists of

the classes ’Edge’, ’EdgeHelper’, ’RandCWS’, ’Route’ and ’RouteCache’.

In the class ‘Edge’ the edges are defined and the variable routing costs for one edge can be

calculated. One edge is defined as the route connecting two locations on a given map with an

origin and an end.

The class ‘EdgeHelper’ contains several auxiliary methods and serves to help create and

improve the solution’s routing. It contains methods to

• create edges according to the CWS heuristic, based on computed savings,

• create an edge and its inverse edge with assigned costs,

• create an edge and its inverse edge with costs and calculate its savings with regard

to the distance of its assigned depot and

• to complete an edge with its inverse.

The class ‘RandCWS’ contributes to a great extent to the functionalities and advantages of the

code. It provides a biased-randomized calculation of the CWS heuristic. For this purpose an

initial ‘dummy solution’ is created in all sub-maps as previously described in the corresponding

solving process. So a return route is built from a depot to all of its assigned customers. Based on

this initial solution a biased-randomized CWS heuristic is applied to improve it.

The previously set variables during the creation of the initial dummy solution are reset to

create the new biased-randomized solution. The procedure is depicted exemplary in Figure 42.

After resetting the variables the edge selection and iterative merging process is performed.

When merging routes the conditions to compute a feasible solution are checked. This includes

sufficient vehicle capacities for the customer demands and, in case a maximum distance is

provided in the input files for the corresponding vehicle type, a check if the maximum

constraint is not violated.

72

public class RandCWS
{
…
 /* 1. RESET VARIABLES */
 // dummySol resets isInterior and inRoute in nodes
 SubSol currentSol = generateDummySol(nodes, depotEdges, diffProducts,
 vht);
 …

 /* 2. PERFORM THE EDGE-SELECTION & ROUTING-MERGING ITERATIVE
 PROCESS*/
 …
 // 2.1. Select the next edge from the list (biased-randomized)
 …
 // 2.2. Determine the nodes i < j that define the edge
 …
 // 2.3. Determine the routes associated with each node
 …
 // 2.4. If all necessary conditions are satisfied, merge
 boolean isMergePossible = false;
 isMergePossible = checkMergingConditions(test, iR, jR, ijEdge,
 diffProducts);
 …

 /* 3. RETURN THE SOLUTION */
 …
 // Check if the solution is feasible for the generated dummy routes
 // If so, assign a possible load distribution; else, delete the route
 from the solution.
 …
 if (pending > 0)
 it.remove(); // this vehicle type can't deliver this dummy
 route
 else
 r.setLoadDistribution(ld);

 Figure 42 Biased randomized CWS heuristic

5.3 Output

A complete example for output data is provided in Annex 4. With the final implementation,

additional values are displayed when the program finishes. The structure of the program’s

output is described in the following sections.

Besides the complete map with all routes, the program gives out a text including several

data. When first started, the program indicates which file it is getting its data input from and

prints out the fractions for the mapping, the routing and the round-robin process. Whenever a

new best solution is found it is printed along with the number of solutions found up to this point

and the time the program required to compute this solution. An exemplary output is provided in

Figure 43.

73

Start solving: testFile Mapping beta: 0.5 CWS beta: 0.5 Round Robin fraction:
1.0 Variance k: 0.5 Stock cost rate Lambda: 0.01
New best found. Cost: 4062.504613876343 among 1 solution in 0.7546984 s
New best found. Cost: 3753.2442858219147 among 2 solutions in 1.421551 s
…

Figure 43 Outputs Part I

When the given time frame is up, the program prints the number of solutions found and prints

the best overall solution with the lowest costs found in this time. This includes the overall costs

and demands, the costs, demand and routing of each sub-map, the employed vehicle types and

the amount that each customer is served. An exemplary output is provided in Figure 44.

Found 4248 solutions in 2700.149 s

Solution [
 Overall solution routing cost=1423.369372844696
 subSolutions=[
 [
 costs=428.8719425201416, demand=[1738, 747, 2997, 2075]
 routes=[
 [

 D20(29,21)>C13(54,17)>C7(39,11)>C6(22,13)>C5(13,11)>C12(12,17)>D20(29,21)

 edges=[[20->13(25.3)], [13->7(16.2)], [7->6(17.1)], [6->5(9.2)],
 [5->12(6.1)], [12->20(17.5)]]
 costs=165.678635597229
 demand=[0, 0, 2251, 2075]
 vht=VehType [capacity=[5500, 5500]]
 …
]
…

Figure 44 Outputs Part II

The following output was added by Lena Pfeilsticker to demonstrate the new calculated values

concerning the stochastic customer demands and the setting of new inventory levels. The output

consists of the total costs, the routing costs and the stock costs. For every depot the best refill

policy is printed in the order Depot 1, Depot 2, Depot 3. Finally the inventory levels for all

products of all depots are printed. The first four numbers indicate the inventory levels for the

four products of the first depot in ascending order, then the second, then the third depot.

74

Total costs: 2609.5193667411804
Routing costs: 1423.369372844696
Stock costs: 1186.1499938964844
Best Policies for Depots: [0.5, 0.5, 0.5]

All Inventory Levels: [18083, 10888, 23821, 20432, 23363, 16557, 20437,
13082, 30025, 20176, 19555, 20804]

Figure 45 Outputs Part III

75

6 Conclusion

In this work a simheuristic algorithm was presented for solving a rich single-period, multi-depot

IRP with stochastic customer demands, stockouts and a heterogeneous fleet. The proposed

methodology for the solving process combines several approaches, i.e., simulation,

metaheuristics, biased randomization and MS approaches, to enable an integrated decision-

making process for the simultaneous planning of inventory levels and routing.

The research area of implementing rich IRPs is challenging because of highly complex

constraints and their interdependencies. This is especially the case when introducing stochastic

values, such as the customer demand in the present work, because the random behavior

increases the number of outcomes exponentially. This leads to long computing times, possibly

exceeding the solving ability of the available resources. When aiming at providing a program

for real-life IRPs, as in the present work, it is necessary to be able to apply several constraints to

the treated IRP due to the complexity of such inventory and routing systems.

In the present work the contribution to the described research area consists of several

developments. Due to the combination of several methodologies the developed program is able

to deal with realistic IRPs. Its flexibility contributes highly to the adaptability to different

scenarios of realistic IRPs and can use real-life data as input for computing feasible, cost-

efficient solutions. The flexibility includes the individual setting of vehicle costs, the defining of

maximum distances for individual vehicle types, the adding and deleting of customers, depots

and warehouses, the possibility of setting current inventory levels etc.

A further significant contribution is that the approach can be used with any probability

distribution so the customer demands do not have to follow a normal distribution– which is an

unrealistic assumption usually employed in the existing literature.

The program is able to consider different refill policies for every depot in an inventory

routing system and computes the lowest cost found in a given time frame by considering the

overall routing and inventory costs. The individual refill policies contribute to finding low-cost

solutions, compared to other approaches using standard refill policies. The program is also able

to consider different stock cost rates.

The simheuristic approach enables to test scenarios with varying variances and thus the

evaluation of risks and costs associated with the scenarios. This provides a decision tool for

applicants. A complete set of tests has been performed to illustrate the methodology and analyze

how costs vary as different uncertainty and costs scenarios are considered.

The overall goal of the present work has been achieved as described previously. During the

implementation, details of the program and of the approach became apparent that were not

considered before. This led to more possibilities of improving the code that could not be

implemented anymore due to the limited time frame.

76

The further research with the developed program includes, among others, experimenting

with different safety stock levels, with time windows or maximum distances and with different

probability distributions of customer demands. Also, further research is possible to be

considered when supplying the customers before their inventory is completely empty, by

installing devices to measure the filling level and then basing an IRP on this assumption.

The overall conclusion is that the program contributes significantly to the research field of

IRPs due its flexible applicability and possibility to be used on real-life cases. The program can

be used in inventory routing companies for computing low-cost solutions and thus fulfills the

need for more research with a realistic framework.

77

Acknowledgements
This work has been partially supported by the Martin-Schmeißer Foundation.

A special thank you goes to Enoc Martinez and Gabriel Alemany for supporting me during the

programming of the code and to Prof. Markus Rabe and Prof. Angel Juan for their advice and

given opportunities.

78

References

Alizadeh, M.; Eskandari, H.; Sajadifar, S.Mehdi (2011): Analyzing a stochastic inventory

system for deteriorating items with stochastic lead time using simulation modeling. In Jain,

S.; Creasey, R.R.; Himmelspach, J.; White, K.P., et al. (eds.): Proceedings of the 2011

Winter Simulation Conference. Piscataway: IEEE 2011, pp. 1645–1657.

Andradóttir, S. (2006): An overview of simulation optimization via random search. In

Henderson, S.G.; Nelson, B.L. (eds.): Handbooks in pperations research and management

science, 1. Aufl. s.l.: Elsevier professional 2006, pp. 617–631.

Angelidis, E.; Bohn, D.; Rose, O. (2012): A simulation-based optimization heuristic using self-

organization for complex assembly lines. In Laroque, C.; Himmelspach, J.; Pasupathy, R.

(eds.): Proceedings of the 2012 Winter Simulation Conference. Berlin: IEEE 2012, pp.

1231–1240.

Anily, S.; Federgruen, A. (1990): One warehouse multiple retailer systems with vehicle routing

costs. Management Science 36 (1990) 1, pp. 92–114.

Anily, S.; Federgruen, A. (1993): Two-echelon distribution systems with vehicle routing costs

and central inventories. Operations Research 41 (1993) 1, pp. 37–47.

Augerat, P.; Belenguer, J.M.; Benavent, E.; Corberan, A.; Naddef, D. (1998): Separating

capacity constraints in the CVRP using tabu search. European Journal of Operational

Research 106 (1998) 2, pp. 546–557.

Barnes-Schuster, D.; Bassok, Y. (1997): Direct shipping and the dynamic single-depot/multi-

retailer inventory system. European Journal of Operational Research 101 (1997) 3, pp. 509–

518.

Bertazzi, L.; Savelsbergh M.; Speranza, M.G. (2008): Inventory routing. In Golden, B.L.;

Raghavan, S.; Wasil, E.A. (eds.): The vehicle routing problem. New York, London: Springer

2008, pp. 49–72.

Bramel, J.; Simchi-Levi, D. (1995): A location based heuristic for general routing problems.

Operations Research 43 (1995) 4, pp. 649–660.

Caceres, J.; Arias, P.; Guimarans, D.; Riera, D.; Juan, A.A. (2014): Rich vehicle routing

problem: survey. ACM Computing Surveys 47 (2014) 2, pp. 1–28.

Campbell, A.; Clarke, L.W.; Savelsbergh M. (2002): Inventory routing in practice. In Toth, P.;

Vigo, D. (eds.): The vehicle routing problem. Philadelphia: Society for Industrial and

Applied Mathematics 2002, pp. 309–330.

Campbell, A.; Savelsbergh M. (2004a): Delivery volume optimization. Transportation Science

38 (2004a) 2, pp. 210–223.

Campbell, A.; Savelsbergh M. (2004b): Efficient insertion heuristics for vehicle routing and

scheduling problems. Transportation Science 38 (2004b) 3, pp. 369–378.

Campbell, A.; Savelsbergh M. (2004c): A decomposition approach for the inventory routing

problem. Transportation Science 38 (2004c) 4, pp. 488–502.

Campbell, A.; Savelsbergh M.; Clarke, L.W.; Kleywegt, A. (1998): The inventory routing

problem. In Crainic, T.G.; Laporte, G. (eds.): Fleet management and logistics. Boston:

Kluwer Academic Publishers 1998, pp. 95–112.

Chao, I.M.; Golden, B.L.; Wasil, E.A. (1993): A new heuristic for the multi-depot vehicle

problem that improves upon best-known solution. American Journal of Mathematical and

Management Sciences 13 (1993) 3-4, pp. 371–406.

Chien, T.W.; Balakrishnan, A.; Wong, R.T. (1989): An integrated inventory allocation and

vehicle routing problem. Transportation Science 23 (1989) 2, pp. 67–76.

Clarke, G.; Wright, J.W. (1964): Scheduling of vehicles from a central depot to a number of

delivery points. Operations Research 12 (1964) 4, pp. 568–581.

Coelho, L.C.; Cordeau, J.-F., Laporte, G. (2014): Thirty years of inventory routing.

Transportation Science 48 (2014) 1, pp. 1–19.

79

Cooke, J.A. (1998): VMI: Very mixed impact? Logistics Management and Distribution Report

37 (1998) 12, pp. 51–53.

Croes, G.A. (1985): A method for solving traveling salesman problems. Operations Research 6

(1985) 6, pp. 791–812.

Dantzig, G.; Ramser, J. (1959): The truck dispatching problem. Management Science 6 (1959)

1, pp. 80–91.

Eskandari, H.; Darayi, M.; Geiger, C.D. (2010): Using simulation optimization as a decision

support tool for supply chain coordination with contracts. In Johansson, B.; Jain, S.;

Montoya-Torres, J.; Hugan, J.; Yücesan, E. (eds.): Proceedings of the 2010 Winter

Simulation Conference. Piscataway: IEEE 2010, pp. 1306–1317.

Federgruen, A.; Zipkin, P. (1984): A combined vehicle routing and inventory allocation

problem. Operations Research 32 (1984) 5, pp. 1019–1036.

Festa, P.; Resende, M.G.C. (2002): GRASP: An annotated bibliography. In Ribeiro, C.C.;

Hansen, P. (eds.): Essays and surveys on metaheuristics. Boston: Kluwer Academic

Publishers 2002, pp. 325–367.

Fleurent, C.; Glover, F. (1999): Improved constructive multistart strategies for the quadratic

assignment problem using adaptive memory. INFORMS Journal on Computing 11 (1999) 2,

pp. 198–204.

Fraza, V. (1998): Streamlining the channel. Industrial Distribution 87 (1998) 9, pp. 73–74.

Gaur, V.; Fisher, M.L. (2004): A periodic inventory routing problem at a supermarket chain.

Operations Research 52 (2004) 6, pp. 813–822.

Glover, F. (1977): Heuristics for integer programming using surrogate constraints. Decision

Sciences 8 (1977) 1, pp. 156–166.

Glover, F. (1986): Future paths for integer programming and links to artificial intelligence.

Computer&Operations Research 13 (1986) 5, pp. 533–549.

Glover, F. (1989): Tabu search. Part I. ORSA Journal on Computing 1 (1989) 3, pp. 190–206.

Glover, F. (2000): Multi-start and strategic oscillation methods - principles to exploit adaptive

memory. In Laguna, M.; Gonzalez-Velade, J.L. (eds.): Computing tools for modeling

optimization and simulation. Boston: Kluwer Academic Publishers 2000, pp. 1–25.

Godfrey, G.A.; Powell, W.B. (2002): An adaptive dynamic programming algorithm for dynamic

fleet management I. Transportation Science 36 (2002) 1, pp. 21–39.

Goel, A.; Gruhn, V. (2005): Solving a dynamic real-life vehicle routing problem. In Haasis,

H.D.; Kopfer, H.; Schönberger, J. (eds.): Operations Research Proceedings 2005. Berlin,

Heidelberg: Springer 2005, pp. 367–372.

Goel, A.; Gruhn, V. (2008): A general vehicle routing problem. European Journal of

Operational Research 191 (2008) 3, pp. 650–660.

Golden, B.L.; Raghavan, S.; Wasil, E.A. (2008): The vehicle routing problem. New York,

London: Springer.

Gonzalez, S.; Juan, A.A.; Riera, D.; Elizondo, M.; Fonseca, P. (2012): Sim-RandSHARP: A

hybrid algorithm for solving the arc routing problem with stochastic demands. In Laroque,

C.; Himmelspach, J.; Pasupathy, R. (eds.): Proceedings of the 2012 Winter Simulation

Conference. Berlin: IEEE 2012, pp. 1–11.

Hoos, H.H.; Stützle, T. (2005): Stochastic local search: foundations and applications. San

Francisco: Morgan Kaufmann Publishers.

Jaillet, P.; Huang, L.; Bard, M.; Dror, M. (2002): Delivery cost approximations for inventory

routing problems in a rolling horizon framework. Transport Science 36 (2002) 3, pp. 292 –

300.

Juan, A.A.; Faulin, J.; Jorba, J.; Riera, D.; Masip, D.; Barrios, B. (2010a): On the use of Monte

Carlo simulation, cache and splitting techniques to improve the Clarke and Wright savings

heuristics. Journal of the Operational Research Society 62 (2010a) 6, pp. 1085–1097.

Juan, A.A.; Faulin, J.; Ruiz, R.; Barrios, B.; Caballé, S. (2010b): The SR-GCWS hybrid

algorithm for solving the capacitated vehicle routing problem. Applied Soft Computing 10

(2010b) 1, pp. 215–224.

80

Juan, A.A.; Faulin, J.; Ferrer, A.; Lourenço, H.R.; Barrios, B. (2013): MIRHA. Multi-start

biased randomization of heuristics with adaptive local search for solving non-smooth routing

problems. TOP 21 (2013) 1, pp. 109–132.

Juan, A.A.; Grasman, S.E.; Caceres-Cruz, J.; Bektaş, T. (2014a): A simheuristic algorithm for

the single-period stochastic inventory-routing problem with stock-outs. Simulation

Modelling Practice and Theory 46 (2014a), pp. 40–52.

Juan, A.A.; Pascual, I.; Guimarans, D.; Barrios, B. (2014b): Combining biased randomization

with iterated local search for solving the multidepot vehicle routing problem. International

Transactions in Operational Research 21 (2014b), pp. 1–21.

Juan, A.A.; Faulin, J.; Grasman, S.E.; Rabe, M.; Figueira, G. (2015): A review of Simheuristics:

extending metaheuristics to deal with stochastic optimization problems. Operations Research

Perspectives 2 (2015), pp. 62–72.

Lahyani, R.; Khemakhem, M.; Semet, F. (2015): Rich vehicle routing problems. European

Journal of Operational Research 241 (2015) 1, pp. 1–14.

Laroque, C.; Klaas, A.; Fischer, J.H.; Kuntye, M. (2012): Fast converging, automated

experiment runs for material flow simulations using distributed computing and combined

metaheuristics. In Laroque, C.; Himmelspach, J.; Pasupathy, R. (eds.): Proceedings of the

2012 Winter Simulation Conference. Berlin: IEEE 2012, pp. 102–111.

Lourenço, H.R.; Martin, O.; Stützle, T. (2001): A beginner's introduction to iterated local

search. In Bartz-Beielstein, T. (eds.): Proceedings of the 4th Metaheuristics International

Conference. Berlin, New York: Springer 2001, pp. 1–11.

Lourenço, H.R.; Martin, O.; Stützle, T. (2002): Iterated Local Search. In Glover, F.;

Kochenberger, G. (eds.): Handbook of metaheuristics. Norwell: Kluwer Academic

Publishers 2002, pp. 321–353.

Martí, R.; Resende, M.G.C.; Ribeiro, C.C. (2013): Multi-start methods for combinatorial

optimization. European Journal of Operational Research 226 (2013) 1, pp. 1–8.

Martin, O.; Otto, S.W.; Felten, E.W. (1992): Large-step Markov chains for the TSP

incorporating local search heuristics. Operations Research Letters 11 (1992) 4, pp. 219–224.

Mjirda, A.; Jarboui, B.; Macedo, R.; Hanafi, S.; Mladenovic, N. (2014): A two phase variable

neighborhood search for the multi-product inventory routing problem.

Computer&Operations Research 52 (2014) Part B, pp. 291–299.

Pillac, V.; Gendreau, M.; Guéret, C.; Medaglia, A.L. (2013): A review of dynamic vehicle

routing problems. European Journal of Operational Research 225 (2013) 1, pp. 1–11.

Reiman, M.; Rubio, R.; Wein, L.M. (1999): Heavy traffic analysis of the dynamic stochastic

inventory-routing problem. Transportation Science 33 (1999) 4, pp. 361–372.

Schmid, V.; Doerner, K.F.; Laporte, G. (2013): Rich routing problems arising in supply chain

management. European Journal of Operational Research, 224 (2013), 3, pp. 435–448.

Silberschatz, A.; Galvin, P.Baer; Gagne, G. (2010): Operating system concepts, 8. ed., internat.

student version. Hoboken: John Wiley & Sons.

Suhl, L.; Mellouli, T. (2009): Optimierungssysteme, 2., überarb. Aufl. Dordrecht: Springer.

Talbi, E.-G. (2009): Metaheuristics. From design to implementation. Hoboken: John Wiley &

Sons.

Tang, L.; Wang, X. (2006): Iterated local search algorithm based on very large-scale

neighborhood for prize-collecting vehicle routing problem. The International Journal of

Advanced Manufacturing Technology 29 (2006) 11-12, pp. 1246–1258.

Toth, P.; Vigo, D. (2002): The vehicle routing problem. Philadelphia: Society for Industrial and

Applied Mathematics.

Trudeau, P.; Dror, M. (1992): Stochastic inventory routing route design with stockouts and

route failures. Transportation Science 26 (1992) 3, pp. 171–184.

van Dijk, Nico M.; van der Sluis, Erik (2008): Practical optimization by OR and simulation.

Simulation Modelling Practice and Theory 16 (2008) 8, pp. 1113–1122.

Waller, M.; Johnson, M.Eric; Davis, T. (1999): Vendor-managed inventory in the retail supply

chain. Journal of business logistics 20 (1999) 1, pp. 183–204.

81

Yu, Y.; Chu, F.; Chen, H. (2006): A model and algorithm for large scale stochastic inventory

routing problem. In Chu, C.; Kacem, I. (eds.): Proceedings of Service Systems and Service

Management International Conference. Piscataway: IEEE 2006, pp. 355–360.

IV

List of Figures

Figure 1 Classification of applicable methodologies (based on Caceres et al. 2014) 6

Figure 2 Simheuristic Approach (based on Juan et al. 2015) .. 8

Figure 3 Biased Randomization of Priority Lists (based on Juan et al. 2015) 9

Figure 4 Iterated Local Search Process (based on Lourenco et al. 2002) 11

Figure 5 Round-robin process ... 12

Figure 6 Clarke and Wright Savings Algorithm (based on Clarke and Wright 1964) 14

Figure 7 Inventory Routing System .. 17

Figure 8 Capacitated Round-robin process ... 19

Figure 9 Flowchart of the Solving Process ... 21

Figure 10 Pseudocode Inputs .. 23

Figure 11 Pseudocode Preliminary Computations .. 24

Figure 12 Pseudocode Multi-Start Process ... 25

Figure 13 Pseudocode Outputs .. 25

Figure 14 Assignment of Customers to Depots .. 28

Figure 15 Routing Process .. 30

Figure 16 Graphical Computational Solution Test 1... 33

Figure 17 Graphical Computational Solution Test 2... 36

Figure 18 Routing Improvement Implementation 1 (based on Croes 1958) 39

Figure 19 Graphical Computational Results Test 3 .. 44

Figure 20 Proportions of Stochastic Routing and Inventory Costs ... 53

Figure 21 Comparison of Customer Demand and Inventory Levels ... 54

Figure 22 Routing Costs Stochastic Solution .. 54

Figure 23 Routing Costs of the deterministic Solution ... 55

Figure 24 Boxplot of the Stochastic Results ... 56

Figure 25 Input files Part I .. 58

Figure 26 Public Method ‘getNextIntGD’ of class ‘RNG’ ... 58

Figure 27 Input files Part II ... 60

Figure 28 Computing Savings for Depots ... 61

Figure 29 Multi-Start Process Part I .. 62

Figure 30 Multi-Start Process Part II .. 62

Figure 31 Routing for sub-customers .. 63

Figure 32 Assignment with Round-robin .. 63

Figure 33 Generate a Stochastic Total Customer Demand ... 64

Figure 34 Class ‘SubAlgorithm’: Perform Simulation Runs .. 65

Figure 35 Calculate expected Surplus and associated Stock Costs for every Depot 66

Figure 36 Setting a new Inventory Level for every Product of every Depot 67

Figure 37 Generating Stochastic Customer Demands ... 68

Figure 38 Method to calculate the total Costs ... 68

Figure 39 Calculating Depot Savings in MapTools .. 69

Figure 40 Methods in class ‘Depot’ .. 70

V

Figure 41 Constructor ‘Policy’ .. 71

Figure 42 Biased-randomized CWS heuristic ... 72

Figure 43 Outputs Part I .. 73

Figure 44 Outputs Part II ... 73

Figure 45 Outputs Part III ... 74

VI

List of Tables

Table 1 Depots Inputs Test 1 ... 31

Table 2 Warehouse Inputs Test 1 .. 32

Table 3 Result of the Manual Solution Test 1 ... 32

Table 4 Result of the Computational Solution Test 1 ... 33

Table 5 Depots Inputs Test 2 ... 34

Table 6 Warehouse Inputs Test 2 .. 35

Table 7 Result of the Manual Solution Test 2 ... 35

Table 8 Result of the Computational Solution Test 2 ... 36

Table 9 Depot Inputs Test 3 .. 41

Table 10 Warehouse Inputs Test 3 .. 41

Table 11 Result of the Manual Solution Test 3 ... 42

Table 12 Result of the Computational Solution Test 3 ... 43

Table 13 Manual Review of Computational Results Test 3 .. 44

Table 14 Inputs Depots Deterministic Final Code .. 48

Table 15 Deterministic Inventory Levels for all Depots and Policies ... 49

Table 16 Warehouse Inputs Final Deterministic Test ... 49

Table 17 Inventory Costs per Policy ... 50

Table 18 Overview results for deterministic Series of Tests ... 50

Table 19 Inputs Depots Stochastic Code ... 51

Table 20 Warehouse Inputs Final Stochastic Test... 52

Table 21 Overview results for stochastic Series of Tests .. 52

VII

List of Abbreviations

COP Combinatorial Optimization Problem

CVRP Capacitated Vehicle Routing Problem

CWS Clarke and Wright Savings (Heuristic)

HVRP Heterogeneous Fleet Vehicle Routing Problem

ILS Iterated Local Search

IRP Inventory Routing Problem

MS Multi-Start

NP(-hard) Non-Deterministic Polynomial-time (-hard)

PDP Pick-up and Delivery

RNG Random Number Generator

RVRP Rich Vehicle Routing Problem

TSP Travelling Salesman Problem

VMI Vendor Managed Inventory

VRP Vehicle Routing Problem

VRPTW Vehicle Routing Problem with Time Windows

WH Warehouse

VIII

Annex

Annex 1

Customer ID X-Coordinate Y-Coordinate Demand Product 1 Demand Product 2

1 37 52 5 5

2 49 49 7 7

3 52 64 22 22

4 20 26 34 34

5 40 30 44 44

6 21 47 12 12

7 17 63 23 23

8 31 62 42 42

9 52 33 32 32

10 51 21 11 11

11 42 41 34 34

12 31 32 12 12

13 5 25 12 12

14 12 42 13 13

15 36 16 14 14

16 52 41 15 15

17 27 23 6 6

18 17 33 8 8

19 13 13 33 33

20 50 32 1 1

Annex 2

Customer ID X-Coordinate Y-Coordinate

Demand

Product 1

Demand

Product 2

Demand

Product 3

1 37 52 5 5 5

2 49 49 7 7 7

3 52 64 22 22 22

4 20 26 34 34 34

5 40 30 44 44 44

6 21 47 12 12 12

7 17 63 23 23 23

8 31 62 42 42 42

9 52 33 32 32 32

10 51 21 11 11 11

11 42 41 34 34 34

12 31 32 12 12 12

13 5 25 12 12 12

IX

14 12 42 13 13 13

15 36 16 14 14 14

16 52 41 15 15 15

17 27 23 6 6 6

18 17 33 8 8 8

19 13 13 33 33 33

20 50 32 1 1 1

21 37 32 5 5 5

22 49 52 7 7 7

23 52 49 22 22 22

24 20 64 34 34 34

25 40 26 44 44 44

26 21 30 12 12 12

27 17 47 23 23 23

28 31 63 42 42 42

29 52 62 32 32 32

30 55 33 11 11 11

31 42 21 34 34 34

32 31 41 12 12 12

33 5 32 12 12 12

34 12 25 13 13 13

35 36 42 14 14 14

36 52 16 15 15 15

37 27 41 6 6 6

38 17 23 8 8 8

39 13 33 33 33 33

40 50 13 1 1 1

41 37 49 5 5 5

42 49 64 7 7 7

43 52 26 22 22 22

44 20 30 34 34 34

45 40 47 44 44 44

46 21 63 12 12 12

47 17 62 23 23 23

48 31 33 42 42 42

49 52 21 32 32 32

50 51 41 11 11 11

51 42 32 34 34 34

52 31 25 12 12 12

53 5 42 12 12 12

54 12 16 13 13 13

55 36 41 14 14 14

56 52 23 15 15 15

57 27 33 6 6 6

58 17 13 8 8 8

59 13 32 33 33 33

60 50 52 1 1 1

61 37 64 5 5 5

X

62 49 26 7 7 7

63 52 30 22 22 22

64 20 47 34 34 34

65 40 63 44 44 44

66 21 62 12 12 12

67 17 33 23 23 23

68 31 21 42 42 42

69 52 41 32 32 32

70 47 35 11 11 11

71 42 25 34 34 34

72 31 42 12 12 12

73 5 16 12 12 12

74 12 41 13 13 13

75 36 23 14 14 14

76 60 33 15 15 15

77 27 13 6 6 6

78 17 32 8 8 8

79 13 52 33 33 33

80 50 45 1 1 1

81 52 58 5 5 5

82 20 40 7 7 7

83 40 60 22 22 22

84 21 20 34 34 34

85 17 38 44 44 44

86 31 47 12 12 12

87 60 63 23 23 23

88 45 60 42 42 42

89 42 33 32 32 32

90 31 21 11 11 11

91 5 49 34 34 34

92 12 32 12 12 12

93 36 25 12 12 12

94 61 42 13 13 13

95 27 16 14 14 14

96 17 41 15 15 15

97 13 23 6 6 6

98 50 36 8 8 8

99 37 13 33 33 33

100 49 12 1 1 1

Annex 3

Customer ID X-Coordinate Y-Coordinate

Demand

Product 1

Demand

Product 2

Demand

Product 3

Demand

Product 4

1 61 9 892 329 0 337

2 71 9 656 201 588 542

XI

3 80 9 589 681 704 922

4 90 8 0 912 912 291

5 162 6 761 210 732 318

6 13 11 530 294 196 693

7 22 13 314 128 785 132

8 39 11 297 138 860 0

9 147 13 586 293 242 423

10 53 12 746 402 300 806

11 161 11 782 615 789 539

12 173 13 820 418 350 0

13 12 17 595 109 279 806

14 54 17 0 0 145 431

15 72 14 476 505 194 442

16 81 17 689 816 586 104

17 89 18 682 458 15 0

18 94 16 233 193 0 523

19 166 15 70 653 596 0

20 18 19 0 104 746 0

21 41 21 638 0 349 0

22 61 18 555 711 404 22

23 170 19 802 426 781 577

24 9 24 706 0 532 71

25 53 25 856 877 953 57

26 82 24 363 266 0 634

27 19 27 155 927 10 562

28 38 28 511 0 727 239

29 43 29 0 0 771 169

30 59 30 183 109 656 557

31 66 27 523 364 369 346

32 97 30 22 128 532 683

33 161 26 386 60 208 857

34 8 30 417 366 795 585

35 29 30 120 137 20 859

36 75 34 770 866 505 125

37 146 34 138 102 788 166

38 16 36 612 905 493 637

39 40 36 961 419 544 0

40 86 38 90 217 0 724

41 97 36 312 941 355 47

42 168 34 0 536 220 356

43 9 42 433 325 0 890

44 24 38 749 112 180 0

45 36 41 826 664 711 714

46 47 39 604 222 0 495

47 72 39 730 105 566 281

48 82 41 914 58 751 177

49 149 41 8 436 497 115

50 151 40 15 14 469 0

XII

51 160 39 220 107 737 554

52 9 44 396 390 718 821

53 92 45 0 872 797 578

54 14 47 183 936 0 909

55 45 49 682 294 931 912

56 57 48 850 568 385 208

57 68 49 857 694 673 527

58 166 46 273 384 492 681

59 22 53 502 546 737 150

60 36 52 517 558 223 8

61 65 53 593 80 412 258

62 75 54 98 369 901 582

63 86 52 694 319 364 212

64 97 50 523 0 0 596

65 147 52 586 843 751 901

66 50 54 373 587 336 217

67 155 56 211 779 0 255

68 12 62 165 295 604 50

69 27 59 13 20 783 940

70 35 59 164 759 364 538

71 44 60 257 0 352 158

72 83 59 953 228 446 0

73 90 61 714 363 730 611

74 19 62 0 580 825 916

75 78 64 425 56 0 183

76 96 62 806 521 937 200

77 149 62 29 248 703 295

78 159 66 766 0 412 796

79 10 68 652 140 571 150

80 26 68 399 814 893 9

81 41 68 891 889 461 147

82 52 69 395 386 269 306

83 64 67 481 261 194 0

84 74 68 410 0 54 0

85 170 70 900 441 100 820

86 16 72 268 803 498 362

87 56 74 72 435 589 449

88 86 72 85 80 318 748

89 146 71 223 425 715 646

90 153 72 865 221 0 525

91 10 75 884 128 832 76

92 26 75 684 933 219 395

93 35 75 503 660 830 269

94 50 74 819 202 187 244

95 64 74 602 0 754 701

96 91 77 689 841 329 418

97 159 77 236 0 406 115

98 25 79 0 951 73 900

XIII

99 45 81 731 642 0 0

100 73 81 335 744 289 840

Annex 4

Start solving: test11 Mapping beta: 0.9 CWS beta: 0.7 Round Robin fraction:
1.0
New best found. Cost: 3097.763965816719 among 1 solutions in 0.21153577 s
New best found. Cost: 2771.234927548427 among 7 solutions in 0.67912984 s
New best found. Cost: 2754.5637371490257 among 27 solutions in 2.2724779 s
New best found. Cost: 2627.4937833666236 among 520 solutions in 17.633913 s
New best found. Cost: 2613.7401683892426 among 3158 solutions in 90.01653 s
New best found. Cost: 2554.301313027424 among 6614 solutions in 186.1463 s
New best found. Cost: 2548.262887036315 among 15540 solutions in 431.71088 s
New best found. Cost: 2544.607862815759 among 36833 solutions in 1010.6004 s
New best found. Cost: 2508.3683721926836 among 53606 solutions in 2579.0735 s
Found 57514 solutions in 3604.8608 s

Solution [
 Overall solution cost=2508.3683721926836
 subSolutions=[
 [
 id=552771, costs=628.3200100963842, demand=[12069, 8913, 12147, 9676]
 routes=[
 [
 id=30545936
 edges=[[D100(29,21)->C44(36,41)], [C44(36,41)->C58(22,53)],
[C58(22,53)->C67(12,62)], [C67(12,62)->C51(9,44)], [C51(9,44)->C37(16,36)],
[C37(16,36)->D100(29,21)]]
 costs=101.81019970698509
 demand=[1603, 1864, 3263, 0]
 vht=Vehicle [vehType=VehType [capacity=[1800, 3150, 4050]]], Load
Distribution=[0, 1, 2]
 deliveries=[[44<-2], [44<-0], [44<-1], [58<-2], [67<-1], [67<-0],
[67<-2], [51<-2], [37<-1], [37<-0], [37<-2]]
],
 [
 id=30545875
 edges=[[D100(29,21)->C6(22,13)], [C6(22,13)->C5(13,11)],
[C5(13,11)->C12(12,17)], [C12(12,17)->C23(9,24)], [C23(9,24)->C26(19,27)],
[C26(19,27)->D100(29,21)]]
 costs=55.65043620479082
 demand=[1550, 0, 1513, 2264]
 vht=Vehicle [vehType=VehType [capacity=[1800, 3150, 4050]]], Load
Distribution=[0, 2, 3]
 deliveries=[[6<-3], [6<-0], [6<-2], [5<-3], [5<-0], [5<-2], [12<-
3], [23<-0], [23<-2], [23<-3], [26<-3]]
],
 [
 id=30545908
 edges=[[D100(29,21)->C34(29,30)], [C34(29,30)->C43(24,38)],
[C43(24,38)->C38(40,36)], [C38(40,36)->C24(53,25)], [C24(53,25)-
>D100(29,21)]]
 costs=75.91893311577297
 demand=[2566, 1545, 1677, 0]

XIV

 vht=Vehicle [vehType=VehType [capacity=[1800, 3150, 4050]]], Load
Distribution=[1, 2, 0]
 deliveries=[[34<-1], [43<-2], [43<-0], [43<-1], [38<-2], [38<-0],
[38<-1], [24<-2], [24<-0], [24<-1]]
],
 [
 id=45678
 edges=[[D100(29,21)->C34(29,30)], [C34(29,30)->C44(36,41)],
[C44(36,41)->C27(38,28)], [C27(38,28)->C28(43,29)], [C28(43,29)->C24(53,25)],
[C24(53,25)->C13(54,17)], [C13(54,17)->C21(61,18)], [C21(61,18)->C1(71,9)],
[C1(71,9)->C0(61,9)], [C0(61,9)->D100(29,21)]]
 costs=123.82366496474086
 demand=[511, 0, 1643, 3370]
 vht=Vehicle [vehType=VehType [capacity=[1800, 3150, 4050]]], Load
Distribution=[0, 2, 3]
 deliveries=[[34<-3], [27<-3], [27<-0], [27<-2], [44<-3], [28<-3],
[28<-2], [24<-3], [13<-3], [13<-2], [21<-3], [1<-3], [0<-3]]
],
 [
 id=30545876
 edges=[[D100(29,21)->C6(22,13)], [C6(22,13)->C19(18,19)],
[C19(18,19)->C5(13,11)], [C5(13,11)->C12(12,17)], [C12(12,17)->C33(8,30)],
[C33(8,30)->C26(19,27)], [C26(19,27)->D100(29,21)]]
 costs=70.02312057543487
 demand=[1167, 1928, 1830, 0]
 vht=Vehicle [vehType=VehType [capacity=[1800, 3150, 4050]]], Load
Distribution=[0, 1, 2]
 deliveries=[[6<-1], [19<-2], [19<-1], [5<-1], [12<-1], [12<-0],
[12<-2], [33<-1], [33<-0], [33<-2], [26<-1], [26<-0], [26<-2]]
],
 [
 id=30545911
 edges=[[D100(29,21)->C20(41,21)], [C20(41,21)->C21(61,18)],
[C21(61,18)->C1(71,9)], [C1(71,9)->C0(61,9)], [C0(61,9)->C7(39,11)],
[C7(39,11)->D100(29,21)]]
 costs=91.91023012133587
 demand=[3038, 1379, 2201, 0]
 vht=Vehicle [vehType=VehType [capacity=[1800, 3150, 4050]]], Load
Distribution=[1, 2, 0]
 deliveries=[[20<-2], [20<-0], [21<-2], [21<-0], [21<-1], [1<-2],
[1<-0], [1<-1], [0<-0], [0<-1], [7<-1], [7<-0], [7<-2]]
],
 [
 id=30545906
 edges=[[D100(29,21)->C37(16,36)], [C37(16,36)->C58(22,53)],
[C58(22,53)->C67(12,62)], [C67(12,62)->C53(14,47)], [C53(14,47)->C51(9,44)],
[C51(9,44)->C42(9,42)], [C42(9,42)->C33(8,30)], [C33(8,30)->D100(29,21)]]
 costs=109.18342540732374
 demand=[1514, 2197, 0, 4042]
 vht=Vehicle [vehType=VehType [capacity=[1800, 3150, 4050]]], Load
Distribution=[0, 1, 3]
 deliveries=[[37<-3], [58<-3], [58<-0], [58<-1], [67<-3], [53<-1],
[53<-0], [53<-3], [51<-3], [51<-0], [51<-1], [42<-0], [42<-1], [42<-3], [33<-
3]]
]]
],
 [
 id=552774, costs=880.375114408449, demand=[10367, 8804, 12318, 11346]
 routes=[

XV

 [
 id=30545980
 edges=[[D101(154,19)->C22(170,19)], [C22(170,19)->C41(168,34)],
[C41(168,34)->C32(161,26)], [C32(161,26)->C31(97,30)], [C31(97,30)-
>C15(81,17)], [C15(81,17)->C3(90,8)], [C3(90,8)->C8(147,13)], [C8(147,13)-
>D101(154,19)]]
 costs=205.6696425811007
 demand=[0, 590, 2250, 2504]
 vht=Vehicle [vehType=VehType [capacity=[1800, 3150, 4050]]], Load
Distribution=[1, 2, 3]
 deliveries=[[22<-3], [41<-1], [41<-3], [41<-2], [32<-3], [31<-2],
[15<-2], [3<-1], [3<-2], [3<-3], [8<-3]]
],
 [
 id=30545977
 edges=[[D101(154,19)->C32(161,26)], [C32(161,26)->C57(166,46)],
[C57(166,46)->C84(170,70)], [C84(170,70)->C88(146,71)], [C88(146,71)-
>C76(149,62)], [C76(149,62)->C64(147,52)], [C64(147,52)->C48(149,41)],
[C48(149,41)->C49(151,40)], [C49(151,40)->D101(154,19)]]
 costs=133.18138079310734
 demand=[1805, 1760, 3935, 0]
 vht=Vehicle [vehType=VehType [capacity=[1800, 3150, 4050]]], Load
Distribution=[1, 0, 2]
 deliveries=[[32<-2], [32<-0], [32<-1], [57<-2], [57<-0], [57<-1],
[84<-2], [84<-0], [84<-1], [88<-1], [88<-0], [88<-2], [76<-2], [64<-2], [48<-
1], [48<-0], [48<-2], [49<-1], [49<-0], [49<-2]]
],
 [
 id=3369284
 edges=[[D101(154,19)->C10(161,11)], [C10(161,11)->C4(162,6)],
[C4(162,6)->C9(153,12)], [C9(153,12)->C8(147,13)], [C8(147,13)-
>D101(154,19)]]
 costs=41.848126140310505
 demand=[2875, 1520, 242, 0]
 vht=Vehicle [vehType=VehType [capacity=[1800, 3150, 4050]]], Load
Distribution=[1, 2, 0]
 deliveries=[[10<-1], [4<-1], [4<-0], [10<-0], [9<-1], [9<-0],
[8<-0], [8<-1], [8<-2]]
],
 [
 id=30546003
 edges=[[D101(154,19)->C36(146,34)], [C36(146,34)->C48(149,41)],
[C48(149,41)->C64(147,52)], [C64(147,52)->C76(149,62)], [C76(149,62)-
>C88(146,71)], [C88(146,71)->C89(153,72)], [C89(153,72)->C66(155,56)],
[C66(155,56)->D101(154,19)]]
 costs=115.69007935615963
 demand=[1691, 2091, 0, 2903]
 vht=Vehicle [vehType=VehType [capacity=[1800, 3150, 4050]]], Load
Distribution=[0, 1, 3]
 deliveries=[[36<-3], [48<-3], [64<-3], [64<-0], [64<-1], [76<-3],
[76<-0], [76<-1], [88<-3], [89<-1], [89<-0], [89<-3], [66<-1], [66<-0], [66<-
3]]
],
 [
 id=30545963
 edges=[[D101(154,19)->C18(166,15)], [C18(166,15)->C11(173,13)],
[C11(173,13)->C22(170,19)], [C22(170,19)->C50(160,39)], [C50(160,39)-
>C36(146,34)], [C36(146,34)->D101(154,19)]]
 costs=80.86417298476981

XVI

 demand=[2050, 1706, 3252, 0]
 vht=Vehicle [vehType=VehType [capacity=[1800, 3150, 4050]]], Load
Distribution=[1, 0, 2]
 deliveries=[[18<-2], [18<-0], [18<-1], [11<-2], [11<-0], [11<-1],
[22<-1], [22<-0], [22<-2], [50<-2], [50<-0], [50<-1], [36<-1], [36<-0], [36<-
2]]
],
 [
 id=30545981
 edges=[[D101(154,19)->C10(161,11)], [C10(161,11)->C4(162,6)],
[C4(162,6)->C9(153,12)], [C9(153,12)->C17(94,16)], [C17(94,16)->C15(81,17)],
[C15(81,17)->C31(97,30)], [C31(97,30)->D101(154,19)]]
 costs=177.38689095390305
 demand=[2451, 1749, 0, 2973]
 vht=Vehicle [vehType=VehType [capacity=[1800, 3150, 4050]]], Load
Distribution=[1, 3, 0]
 deliveries=[[10<-3], [4<-1], [4<-0], [4<-3], [9<-1], [9<-0], [9<-
3], [17<-3], [17<-0], [17<-1], [15<-1], [15<-0], [15<-3], [31<-1], [31<-0],
[31<-3]]
],
 [
 id=30545999
 edges=[[D101(154,19)->C50(160,39)], [C50(160,39)->C57(166,46)],
[C57(166,46)->C84(170,70)], [C84(170,70)->C96(159,77)], [C96(159,77)-
>C77(159,66)], [C77(159,66)->D101(154,19)]]
 costs=125.73482159909805
 demand=[1002, 0, 818, 2966]
 vht=Vehicle [vehType=VehType [capacity=[1800, 3150, 4050]]], Load
Distribution=[0, 2, 3]
 deliveries=[[50<-3], [57<-3], [84<-3], [96<-0], [96<-2], [96<-3],
[77<-3], [77<-0], [77<-2]]
]]
],
 [
 id=552777, costs=999.6732476878504, demand=[23655, 20569, 20934, 18408]
 routes=[
 [
 id=30546074
 edges=[[D102(64,62)->C94(64,74)], [C94(64,74)->C86(56,74)],
[C86(56,74)->C93(50,74)], [C93(50,74)->C81(52,69)], [C81(52,69)->C70(44,60)],
[C70(44,60)->D102(64,62)]]
 costs=63.52651062816858
 demand=[2073, 0, 1562, 1858]
 vht=Vehicle [vehType=VehType [capacity=[6000, 10500, 13500]]],
Load Distribution=[0, 2, 3]
 deliveries=[[94<-3], [94<-0], [94<-2], [86<-3], [93<-3], [93<-0],
[93<-2], [81<-2], [81<-0], [81<-3], [70<-2], [70<-0], [70<-3]]
],
 [
 id=30119923
 edges=[[D102(64,62)->C61(75,54)], [C61(75,54)->C52(92,45)],
[C52(92,45)->C56(68,49)], [C56(68,49)->C60(65,53)], [C60(65,53)->C65(50,54)],
[C65(50,54)->C54(45,49)], [C54(45,49)->C59(36,52)], [C59(36,52)->C69(35,59)],
[C69(35,59)->C68(27,59)], [C68(27,59)->C73(19,62)], [C73(19,62)->C97(25,79)],
[C97(25,79)->C92(35,75)], [C92(35,75)->C93(50,74)], [C93(50,74)->C81(52,69)],
[C81(52,69)->D102(64,62)]]
 costs=180.48316458607235
 demand=[0, 2403, 2368, 6668]

XVII

 vht=Vehicle [vehType=VehType [capacity=[6000, 10500, 13500]]],
Load Distribution=[1, 2, 3]
 deliveries=[[61<-3], [52<-1], [52<-2], [52<-3], [56<-2], [60<-3],
[65<-3], [54<-3], [59<-3], [69<-3], [68<-3], [73<-2], [73<-1], [73<-3], [97<-
2], [97<-1], [97<-3], [92<-3], [93<-3], [81<-3]]
],
 [
 id=30546060
 edges=[[D102(64,62)->C74(78,64)], [C74(78,64)->C99(73,81)],
[C99(73,81)->C87(86,72)], [C87(86,72)->C95(91,77)], [C95(91,77)->C75(96,62)],
[C75(96,62)->C72(90,61)], [C72(90,61)->C62(86,52)], [C62(86,52)->C63(97,50)],
[C63(97,50)->C40(97,36)], [C40(97,36)->C39(86,38)], [C39(86,38)->C47(82,41)],
[C47(82,41)->C46(72,39)], [C46(72,39)->C35(75,34)], [C35(75,34)->C25(82,24)],
[C25(82,24)->C2(80,9)], [C2(80,9)->C14(72,14)], [C14(72,14)->C30(66,27)],
[C30(66,27)->C29(59,30)], [C29(59,30)->C45(47,39)], [C45(47,39)->C79(26,68)],
[C79(26,68)->C78(10,68)], [C78(10,68)->C90(10,75)], [C90(10,75)->C85(16,72)],
[C85(16,72)->C91(26,75)], [C91(26,75)->C80(41,68)], [C80(41,68)->C55(57,48)],
[C55(57,48)->C60(65,53)], [C60(65,53)->D102(64,62)]]
 costs=354.19253967894326
 demand=[7683, 4694, 0, 10163]
 vht=Vehicle [vehType=VehType [capacity=[6000, 10500, 13500]]],
Load Distribution=[1, 3, 0]
 deliveries=[[74<-3], [74<-0], [74<-1], [99<-3], [99<-0], [99<-1],
[87<-3], [87<-0], [87<-1], [95<-3], [72<-3], [75<-3], [63<-0], [63<-3], [62<-
3], [46<-3], [46<-0], [46<-1], [35<-3], [47<-3], [47<-0], [47<-1], [39<-3],
[39<-0], [39<-1], [40<-3], [40<-0], [40<-1], [25<-1], [25<-3], [25<-0], [2<-
3], [14<-3], [30<-0], [30<-1], [30<-3], [29<-3], [45<-1], [45<-0], [45<-3],
[79<-3], [78<-3], [78<-0], [78<-1], [90<-3], [85<-3], [91<-1], [91<-0], [91<-
3], [80<-3], [55<-3], [55<-0], [55<-1], [60<-0], [60<-3]]
],
 [
 id=226886
 edges=[[D102(64,62)->C82(64,67)], [C82(64,67)->C86(56,74)],
[C86(56,74)->C98(45,81)], [C98(45,81)->C80(41,68)], [C80(41,68)->C92(35,75)],
[C92(35,75)->C91(26,75)], [C91(26,75)->C85(16,72)], [C85(16,72)->C90(10,75)],
[C90(10,75)->C78(10,68)], [C78(10,68)->C79(26,68)], [C79(26,68)->C68(27,59)],
[C68(27,59)->C69(35,59)], [C69(35,59)->C59(36,52)], [C59(36,52)->C54(45,49)],
[C54(45,49)->C65(50,54)], [C65(50,54)->D102(64,62)]]
 costs=157.44694526954882
 demand=[5841, 7360, 7501, 0]
 vht=Vehicle [vehType=VehType [capacity=[6000, 10500, 13500]]],
Load Distribution=[0, 1, 2]
 deliveries=[[82<-2], [82<-0], [82<-1], [86<-2], [80<-2], [80<-0],
[80<-1], [98<-1], [98<-0], [92<-2], [92<-0], [92<-1], [91<-2], [91<-0], [91<-
1], [85<-2], [85<-0], [85<-1], [90<-2], [78<-1], [78<-0], [78<-2], [79<-1],
[79<-0], [79<-2], [68<-1], [68<-0], [68<-2], [69<-1], [69<-0], [69<-2], [59<-
1], [54<-1], [54<-0], [54<-2], [65<-1], [65<-0], [65<-2]]
],
 [
 id=30446368
 edges=[[D102(64,62)->C83(74,68)], [C83(74,68)->C99(73,81)],
[C99(73,81)->C87(86,72)], [C87(86,72)->C95(91,77)], [C95(91,77)->C75(96,62)],
[C75(96,62)->C72(90,61)], [C72(90,61)->C71(83,59)], [C71(83,59)->C62(86,52)],
[C62(86,52)->C61(75,54)], [C61(75,54)->C56(68,49)], [C56(68,49)->C46(72,39)],
[C46(72,39)->C35(75,34)], [C35(75,34)->C47(82,41)], [C47(82,41)->C40(97,36)],
[C40(97,36)->C16(89,18)], [C16(89,18)->C2(80,9)], [C2(80,9)->C14(72,14)],
[C14(72,14)->C30(66,27)], [C30(66,27)->C29(59,30)], [C29(59,30)->C55(57,48)],
[C55(57,48)->D102(64,62)]]
 costs=244.02408752511747

XVIII

 demand=[9532, 5624, 9541, 0]
 vht=Vehicle [vehType=VehType [capacity=[6000, 10500, 13500]]],
Load Distribution=[1, 2, 0]
 deliveries=[[83<-0], [83<-2], [99<-2], [99<-0], [99<-1], [87<-2],
[87<-0], [87<-1], [95<-0], [95<-2], [75<-1], [75<-0], [75<-2], [72<-2], [62<-
2], [62<-0], [62<-1], [71<-1], [71<-0], [71<-2], [61<-2], [61<-0], [61<-1],
[56<-2], [56<-0], [56<-1], [46<-2], [46<-0], [46<-1], [35<-1], [35<-0], [35<-
2], [47<-2], [47<-0], [47<-1], [40<-2], [16<-2], [16<-0], [16<-1], [2<-2],
[14<-2], [14<-0], [14<-1], [30<-2], [29<-1], [29<-0], [29<-2], [55<-1], [55<-
0], [55<-2]]
]]
]]
]

Annex 5

Customer ID X-Coordinate Y-Coordinate

Demand

Product 1

Demand

Product 2

Demand

Product 3

Demand

Product 4

1 61 9 892 329 0 337

2 71 9 656 201 588 542

3 80 9 589 681 704 922

4 90 8 0 912 912 291

5 162 6 761 210 732 318

6 13 11 530 294 196 693

7 22 13 314 128 785 132

8 39 11 297 138 860 0

9 147 13 586 293 242 423

10 53 12 746 402 300 806

11 161 11 782 615 789 539

12 173 13 820 418 350 0

13 12 17 595 109 279 806

14 54 17 0 0 145 431

15 72 14 476 505 194 442

16 81 17 689 816 586 104

17 89 18 682 458 15 0

18 94 16 233 193 0 523

19 166 15 70 653 596 0

20 18 19 0 104 746 0

Eidesstattliche Versicherung

______________________________ ____________________

Name, Vorname Matr.-Nr.

Ich versichere hiermit an Eides statt, dass ich die vorliegende Bachelorarbeit/Masterarbeit* mit

dem Titel

__

__

__

selbstständig und ohne unzulässige fremde Hilfe erbracht habe. Ich habe keine anderen als die

angegebenen Quellen und Hilfsmittel benutzt sowie wörtliche und sinngemäße Zitate kenntlich

gemacht. Die Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde

vorgelegen.

__________________________ _______________________

Ort, Datum Unterschrift

 *Nichtzutreffendes bitte streichen

Belehrung:

Wer vorsätzlich gegen eine die Täuschung über Prüfungsleistungen betreffende Regelung einer

Hochschulprüfungsordnung verstößt, handelt ordnungswidrig. Die Ordnungswidrigkeit kann mit

einer Geldbuße von bis zu 50.000,00 € geahndet werden. Zuständige Verwaltungsbehörde für

die Verfolgung und Ahndung von Ordnungswidrigkeiten ist der Kanzler/die Kanzlerin der

Technischen Universität Dortmund. Im Falle eines mehrfachen oder sonstigen schwerwiegenden

Täuschungsversuches kann der Prüfling zudem exmatrikuliert werden. (§ 63 Abs. 5

Hochschulgesetz - HG -)

Die Abgabe einer falschen Versicherung an Eides statt wird mit Freiheitsstrafe bis zu 3 Jahren

oder mit Geldstrafe bestraft.

Die Technische Universität Dortmund wird gfls. elektronische Vergleichswerkzeuge (wie z.B. die

Software „turnitin“) zur Überprüfung von Ordnungswidrigkeiten in Prüfungsverfahren nutzen.

Die oben stehende Belehrung habe ich zur Kenntnis genommen:

_____________________________ _________________________
Ort, Datum Unterschrift

