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1. Introduction 

 

The importance of big data analytics is in the age of technology is a widely known and accepted 

fact in a wide array of businesses. The opportunities in cost reduction and fast decision making 

enabled by using techniques in big data analytics is desirable to every industry. However, the 

complexity of analysis in big data, the requirement of expert data scientists, and many other 

challenges has resulted in process and manufacturing industries not to benefit from the 

significant potential of big data analytics. 

First challenge that industries are facing in the field of big data, is the lack of feasibility in 

recorded data that is stored in databases. Although managing to keep the data from all the 

necessary sectors of a process, these databases are not designed for big data analytics. As a 

result, contextualizing, searching for data, visualization, and other analysis tasks are either too 

complicated or time consuming for the data storing devices. This is closely related to the other 

major challenge in process and manufacturing industries: the online monitoring computation 

requirements. Data is produced a high rate in today’s industry, and analyzing this data and 

extracting information from this data leading to knowledge discovery is achieved at a lower 

rate. This leads to decision making and relevant actions to be always few steps behind the 

effects of any occurrence on process performance. 

The exponential growth of databases, and more importantly the recognition of the potential it 

bears has brought data mining to attention. Data mining is defined as the process of discovering 

patterns in data automatically or semi-automatically. Data mining gains ever increasing 

popularity through the rapid increase in the amount of all data available, as well as the 

accessibility of machines able to handle the search tasks (Witten et al. 2011). Current attempts 

in this technology however, produce results that are not as robust as the industry demands. This 

inconvenience is rooted in overgeneralization of the methods, the expertise required to keep 

the solutions running, and lack of flexibility in solutions.  

It seems that the next generation in the development of data mining solutions, are plug and play 

solutions that do not require the information on the physical aspects of the process and are 

designed with regards to the needs of the manufacturing process specialists. 

The main goal of this study is to develop a model-free, data-driven solutions for cross-asset 

detecting of asset degradation, anomalies, and suboptimal behavior in process industry.  
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A monitoring strategy using this method is suggested to detect failures from its early 

indications in the data. The fault detection method is developed with focus on one particular 

type of assets; serial reciprocating compressors within a chemical production process.  

The aim for the research is for solutions to be applicable on a wide range of assets, and not to 

require modifications for different types of assets. In addition, the solution is aimed to be robust 

and easy to use, eliminating the need for a data scientist to implement and applicable by an 

engineer who has knowledge on the process, with little to no data science expertise. 

The study starts with an extensive research on data analytics and fault diagnosis in chemical 

industry, following a review on the most recent developments in the methods for monitoring 

chemical and process industry assets, with focus on reciprocating compressors. The 

mathematical necessary for development of the fault detection method is also introduced and 

described. 

The fault detection method is described in detail using a sample set of data, in a step-by-step 

manner. This method is the results of combining different mathematical methods and concepts 

in different areas of analytics, such as multivariate non-linear regression methods and artificial 

neuron networks. The attempt to choose a fitting methodology is made by application and 

modification of these techniques on use cases where actual process history log is available. In 

every step, the technique that gives the most advantages for the analysis is chosen and applied. 

Additionally, a strategy is suggested to complement the fault detection method for online 

monitoring. 

The fault detection method developed in the study is implemented in R programming language 

as a prototype. This method is applied to real process data from Huntsman as a proof of concept, 

and the results of this data analysis is studied in detail.   
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2. Data analytics in chemical industry 

 

Big data and next generation analytics are playing an important role in today’s chemical 

industry. They are present in practically every aspect of the industry including manufacturing 

enhancement, supply chain management, marketing improvement, price fine-tuning, 

innovation support, and human resource management (Saha 2017).  

There is a tremendous amount of data being produced every day, from which very little is 

analyzed and turned into useful knowledge. This lead to a universal collective effort to develop 

methods and tools to profit from this knowledge in a wide variety of applications and industries.  

This chapter is dedicated to an in-depth look at big data analytics and statistical methods used 

in chemical and process industry. An extensive literature review on the state-of-the-art methods 

in fault diagnosis as well as the mathematical background required for developing the novel 

fault detection method is presented.  

 

2.1. Big data and data mining 

Big Data is defined as “a situation in which data sets have grown to such enormous sizes that 

conventional information technologies can no longer effectively handle either the size of the 

data set or the scale and growth of the data set” (Ohlhorst 2013, p. 1). Although not a new 

concept, big data has gained attention only recently since the means to interpret and extract 

useful information, namely modern computers, have been developed.  

The world is in the Era of Datafication; a term coined by Mayer-Schönberger, Cukier (2013) 

Referring to modern technological trend turning many aspects of our life into computerized 

data. This movement has led the world into a data deluge, meaning that the collective data 

processing capacity is surpassed by sheer volume of new data being generated. This deluge is 

caused by a wide array of sources ranging from everyday purposes such as  social media and 

phone sensors, to scientific applications such as geophysical exploration and gene sequencing 

(Dietrich et al. 2015). 

According to Dobre, Xhafa (2014) there is around 2.5 billion gigabytes of data being produced 

around the world every day, and from this amount, 90% is unstructured. This fact shows a 

promising opportunity to make use of big data and its enormous potential, and has resulted in 
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scientists to start incorporating any related dataset, whether unstructured data, archival data, or 

real-time data into the process (Ohlhorst 2013). 

Proper data processing can lead to new knowledge discovery as well as ways to deal with rising 

challenges and opportunities (Chen et al. 2013). Improved decision-making and business 

strategies can be achieved through implementation of advanced big data analysis technologies 

(Yi et al. 2014). Sivarajah et al. (2017) summarize the opportunities of big data as value 

creation, rich business intelligence for better informed decisions, and enhancement of 

flexibility in supply chain and resource allocations. However, within these great opportunities 

lies great challenges. These challenges include data integration complexities, lack of skilled 

personal and resources, data security and privacy, inadequate infrastructure, and 

synchronization of large data. With regards to these challenges, Zhang et al. (2015) argue that 

in order to benefit from the full potential of big data, it is necessary to develop technologies 

that are extremely efficient, scalable and flexible, with no regards to data type or format. 

Therefore, common statistical analysis that is widely used today is not nearly sufficient to 

reveal this potential. 

 

2.2. Fault diagnosis in chemical processes 

Abnormal event management (AEM) is the science of detecting diagnosing and correcting the 

abnormal conditions of faults in a process in a timely manner. Venkatasubramanian et al. 

(2003b) stated that AEM related problems are the number one cause of petrochemical industry 

losing 20 billion dollars every year. Fault detection plays an increasingly important role in 

process industry, due to its key role in ensuring safety and productivity of processes (Jiang et 

al. 2013). Failures and malfunctions in chemical plants, leads to an increase in operation costs 

and downtimes. Himmelblau (1978) described chemical plants by their complex processes and 

equipment, high throughput, and serious consequences for serious accidents. These 

characteristics leads to a lot of effort and money spent on process fault detection methods.  

The term fault is generally defined as a departure from an acceptable range of an observed 

variable or a calculated parameter associated with a process (Andow 1980) . Fault detection 

lies at the core of AEM, making it a subject of interest for many studies and publications in 

more recent years. A wide array of fault detection methods have been developed over the past 

couple of decades, ranging from analytical methods to artificial intelligence and statistical 

approaches. Venkatasubramanian et al. (2003b) classify these methods based on the type of 
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prior knowledge and the type of diagnostic search strategy. With this approach, the methods 

are categorized into three general groups: quantitative model-based methods, qualitative 

model-based methods, and process history based methods. These categories and their sub-

categories can be seen in Figure 2. 1. 

 

Figure 2. 1 - Classification of Diagnostic methods (Venkatasubramanian et al. 2003b) 

A more general approach in classifying process fault detection techniques is introduced by 

Himmelblau (1978) in two categories: parameter estimation and pattern recognition methods.  

 

2.2.1. Pattern recognition methods for fault detection and diagnosis 

Pattern recognition is defined as “the process of assigning a label or category to a pattern on 

the basis of certain features in the pattern” (Himmelblau 1978, p. 273). Pattern recognition 

methods are generally used in cases where a complete knowledge on probability distribution 

of the data is not available. If the number of measurements are not enough to draw meaningful 

statistical distributions, nonparametric techniques are used instead.  The two main techniques 

of pattern recognition are template matching and feature extraction, of which the latter is 

usually used in chemical process industry.  (Himmelblau 1978).  

Pattern recognition methods are categorized by Himmelblau (1978) in three major categories: 

Fault dictionaries, Cluster Analysis, and Acoustic Noise and Vibration monitoring. 

Himmelblau argues that statistical analysis applied to pattern recognition is superior 

deterministic pattern recognition due to its ability to compensate for the small non-faulty drifts 

and observation noise.  

Multivariate statistical techniques have proved to be powerful tools in pattern recognition 

methods. Their capability in reducing the dimensionality of the data while retaining essential 
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information, as well as their ability to use correlations to effectively extract true information 

while handling noise and small inconsistencies in data has made these techniques an essential 

tool in every diagnostic system that follows a pattern recognizing approach in the recent years 

(Venkatasubramanian et al. 2003a). 

  

2.2.2. Fault diagnostics and monitoring assets in chemical industry 

In this section a comprehensive literature research is presented on the state of the art in fault 

detection and diagnostics in chemical process assets, namely compressors. The methods that 

are applicable to chemical and process industry are studied first, following a more focused 

research on reciprocating compressors specifically.   

Multivariate Statistical Process Monitoring (MSPM) methods have recently became the most 

widely used methods in diagnosis and monitoring of processes and assets in Chemical industry. 

Among these methods, principal component analysis (PCA) is most frequently used due to its 

simplicity and ability to work with high-dimensional noisy data (Jiang et al. 2013).  

Rotem et al. (2000) combined PCA with model based multivariate statistics to compensate for 

shortcomings of conventional PCA in the case of nonlinearly correlated parameters and 

periodic fluctuations in data. This method, also known as Model-Based PCA (MBPCA), the 

portion of variation that is not predicted in the retained Principle components is analyzed using 

a model of the process, improving the diagnostic resolution significantly. The study and its 

validation on an Ethylene compressor confirmed that although MBPCA requires addressing 

the requirements of both a model-based method and a data-driven one, a good performance is 

achievable even with a relatively simple model of the process.  

Chen and Yan (2012) proposed a novel method for fault diagnosis in chemical industry, 

incorporating self-organizing maps (SOM) and correlative component analysis (CCA). CCA is 

a pattern classification technique, proposed by Chen et al. (1996), that aims to reduce the 

dimensions of complex classified data by evaluating the relative importance of each component 

in the data in a quantitative manner. This method is designed to take classification information 

supplied with data into consideration while performing dimension reduction tasks, meaning 

that the result of this transformation in CCA space will attempt to separate the data based on 

its classification with regards to the correlations between the variables. The results of analysis 

on sample data shows that this method gives more satisfactory results than PCA and the 

sequential discriminant analysis in practical classifying problems.  
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The fault diagnosis method developed by Chen and Yan (2012) takes advantage of CCA 

abilities in extracting fault classification information, combined with discriminating different 

states of the process on the output map resulted from SOM. The efficiency of this method in 

real time monitoring of complex chemical processes is verified in a case study. This method 

shows improved performance compared to simple SOM and PCA combined with SOM with 

regards to accuracy of fault diagnosis.  

An improvement to the conventional PCA monitoring methods is suggested by Jiang et al. 

(2013). This modification, called Sensitive Principal Component Analysis (SPCA), aims to 

provide a guideline to the principal components that are selected for developing control charts 

for monitoring a process. This guideline is composed through finding principal components 

that are responsible for dominant variations in an anomaly observation, and mark them as 

Sensitive Principal Components (SPC).   

In an attempt to develop a purely adoptive model maintenance strategy, Lu et al. (2017) 

proposed a system based on GSOM to model processes with drifts and outliers. This algorithm 

utilizes local partial least squares (PLS) models in GSOM projections in order to achieve the 

flexibility required for adjustments while training complex data as well as in online adaptation. 

This method is specifically designed to be able to explore new data and develop prototype 

models for data. This model is verified to out show better performance than conventional static, 

non-linear, and moving window PLS methods. The combination of GSOM flexibility to adapt 

to overall multi model system combined with the precision of local PLS models makes this 

method robust in dealing with abrupt process shifts and transitions.  

The state of the art in condition monitoring of reciprocating compressors is studied extensively 

by Schultheis et al. (2007). Their study discussed different measurements and protective 

functions, and compared different methods of monitoring for reciprocating compressors. As a 

result, monitoring techniques are categorized in four groups based on the measurement or 

property that is monitored. 

1. Vibrations: Measurements on the crankcase as well as crosshead or distance piece of 

the compressor are the most effective values for monitoring.  

2. Temperature: The main temperature measurements in a reciprocating compressor are 

valve temperatures, discharge temperature, packing temperature, and bearings 

temperatures.  

3. Rod drop and Rod runout: Rod drop is the indication of the vertical piston movement 

inside the cylinder, calculated at the pressure packing case. Rod runout refers to 

deviations of rod from its main axis position.  
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4. PV Analysis: Pressure velocity (PV) is monitored through measurement of dynamic 

pressure inside a compressor throughout a stroke using a dynamic pressure transducer. 

 

Ahmed et al. (2012) developed a method for fault detection and diagnosis of a multistage 

reciprocating compressor, using a PCA based method to various faults including suction valve 

leakage, inter-cooler leakage, loose belt drive and other possible failures in a reciprocating 

compressor. The method used Hotelling’s 𝑇2 and Q-statistics to compare the feature values 

from the time domain of the vibration signal. Ahmed et al. demonstrated that PCA based 

methods have the ability to detect single and multiple faults in a reciprocating compressor. The 

study also showed Q-statistic’s superiority to Hotelling’s test in detecting faults. 

Farzaneh-Gord and Khoshnazar (2016) developed a numerical method to analyze a single stage 

reciprocating compressor for valve failures. This model takes piston movement, valve 

dynamics, and mass flow rate in the cylinder into account. The simulation results of this study 

agreed with experimental results, showing that malfunctions in suction and discharge valves 

will lead to decrease in compressor mass flow and increase in discharge temperature, with 

suction valve having more significant effects. A suction valve failure will additionally cause 

an increase in suction temperature. The study suggested that monitoring suction and discharge 

temperatures of the compressor can be effective in valve failure diagnosis.  

Kostyukov and Naumenko (2016) used Russian methodological and standards base to develop 

a novel online health monitoring technique for reciprocating compressors under the control of 

vibration-Based diagnostics. This method enables the operator to use real time condition of the 

machine to plan use of spare parts and repairs, which results in an extension in the life span of 

the compressor.  

Lu et al. (2016) proposed a method for centrifugal compressor fault diagnosis using thermal 

parameters of the compressor. This method is based on an adaptive trend extraction algorithm 

and a sliding window based matching strategy, and demonstrates enough robustness and 

efficiency to detect the failure in its early stages, preventing serious damage to the compressor. 

Potočnik, Govekar (2017) developed a semi-supervised vibration-based classification and 

condition monitoring method for reciprocating compressors using a combination of feature 

extraction, PCA, and statistical analysis. This method addresses the problem in refrigeration 

appliances that despite the large database of vibration-based measurements available, there is 

no information extracted to define classes of operations for these compressors. The study 
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compares different classification methods and verifies that although linear methods such as DA 

and SVM are suitable candidates for industrial applications due to their simplicity, more 

complex problems and more general solutions are achieved through using nonlinear classifiers 

such as neural networks trained by Bayesian regularization.  

 

2.2.3. Criteria for evaluation of diagnostic systems 

Venkatasubramanian et al. (2003b) identified the desirable characteristics of a diagnostic 

system. A set of criteria is derived based on these characteristics that can be used to benchmark 

different diagnostic systems. However, the following concept must be considered when 

comparing diagnostic systems. The main task for a diagnostic classifier is to suggest 

hypotheses or faults the explain occurring abnormalities. These explanations should be 

complete, meaning that the actual faults should be a subset of the proposed fault set. On the 

other hand, the desirable resolution for the system aims to make the fault set to be minimal. 

Therefore, one should consider the trade-off in the accuracy of predictions between 

completeness and accuracy. Aside from this concept, there are ten characteristics that 

Venkatasubramanian et al. found desirable for diagnostic systems to possess.  

1. Quick detection and diagnosis: Although it is desirable for the system to respond 

quickly in detecting malfunctions, this can be disruptive to the performance of the 

system during normal operation (Willsky 1976). A system too sensitive to can detect 

high frequency noise as failure, which leads to frequent false alarms during normal 

operation. 

2. Isolability: It is expected of the diagnostic system to distinguish between different 

failures. This is in contrast with rejection of modelling uncertainties, meaning that a 

system with high degree of isolability usually performs poorly when it comes to 

rejecting modelling uncertainties.  

3. Robustness: The system is desired to be robust to noise and uncertainties, enabling the 

performance to degrade gradually when a failure happens. 

4. Novelty identifiability: In addition of the diagnostic system determining the process 

condition as normal or abnormal, it is also expected of the system to decide if the 

abnormality is caused by an unknown ‘novel’ malfunction. This feature is important 

because usually most of the historic data available for a process fall under normal 

operation zones. There is limited data available for different kinds of failure, and often 

some failure types are completely unknown as far as the historic data goes. 

5. Classification error estimate: If a system is able to give an estimate on the 

classification error that can occur in the analysis, the recommendations by the system 

will be more reliable to the user. 
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6. Adaptability: It is very much desirable for a diagnostic system to be adaptable to 

changes in the process, whether it is due to disturbances, or environmental conditions 

such as production quantities and quality of raw material.  

7. Explanation facility: The ability to explain the origin and propagation of the faults is 

an important factor for diagnostic systems. The justification of the recommendations 

by the system will lead to a more accurate on-line decision support system. 

8. Modelling requirements: The modelling effort required for fast and easily deployed 

real-time diagnostic system should be minimal. 

9. Storage and computational requirements: A balance is to be found between the 

complexity of the algorithms and the storage requirements of a diagnostic system. 

10. Multiple fault identifiability: Due to interacting nature of most of faults, it is usually 

difficult to identify multiple simultaneous faults in a process. The patterns that occur 

when a combination of faults is happening is not necessarily detectable by a system 

trained to detect the faults individually. Additionally, designing separate models for 

different combinations of faults is not feasible for large processes. 

This ten-part criteria will be the basis of evaluation for the fault detection method that is 

developed in this study. 

 

2.3. Multivariate data analysis 

Multivariate data analysis refers to “all statistical techniques that simultaneously analyze 

multiple measurements on individuals or objects under investigation.” (Hair 2006, p. 4). These 

methods are usually extensions of univariate and bivariate analysis. Some of the methods are 

designed to replace multiple steps of univariate analysis, while others are uniquely designed to 

solve multivariate issues (Hair 2006).  

Due to the recent explosion in the information produced and available, as well as development 

of new technologies to store this data, there is a need for means to study this data and extract 

knowledge for decision making. Although some cases are possible to analyze using simple 

statistics, most of the data requires more complex methods and tools for knowledge discovery. 

Hence there is growing interest and investment in Multivariate statistical techniques as one 

these tools (Hair 2006).  

In the following, three multivariate analysis techniques are described in detail. These methods 

are the building blocks of the novel fault detection method that is developed in this study.  
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2.3.1. Principal Component Analysis 

Principal Component Analysis (PCA) is one of the most important and powerful methods for 

dimension reduction. It is a data-driven modelling technique that aims to transform the data 

into fewer dimension with minimum loss of data.  

The method has been modified and reformulated over the years. There are two different 

approaches to PCA; on one hand there is Pearson’s (1901) regression based school of thought,  

with focus on  modelling properties of PCA. As the first inventor of the method, Pearson 

interpreted the method as explaining the variation with principal components. On the other 

hand, there is the multivariate statistical approach to PCA, as conceptualized by Hotelling 

(1951) around the same time as the idea of taking linear combination of variables was 

introduced. The variation of the principal components is stressed in this approach. 

These two methods, although seemingly similar, have fundamental conceptual differences. 

Hotelling’s approach, focuses on the specific direction of principal components. PCA in this 

approach functions as a method to define new axes that explain the most of variation. In 

Pearson’s approach however, it is the subspace that plays the most important role, and the axes 

act as a basis for the subspace (Bro, Smilde 2014).  

2.3.1.1. Formulation 

PCA as usually formulated today follows an approach closer to that of Hotelling. Based on 

Jollife (2002), the following formulation is used to derive the principal components: Suppose 

X as a vector of p random variables. Since looking at the whole structure of variances and 

covariances of the variables is time consuming and not very useful, the alternative approach of 

looking for a few derived variables is suggested. These variables are to be found in a way that 

they preserve the most possible information given by the variances and correlations for 

covariances.  

The first step is to look for a linear combination of the variables that have the maximum 

variance, this combination is denoted as 𝜶′1𝑿, where 𝜶 is a vector of p constants, so that 

𝜶′1𝑿 =  𝛼11𝑥1 + 𝛼12𝑥2 +⋯+ 𝛼1𝑝𝑥𝑝 = ∑𝛼1𝑗𝑥𝑗  

𝑝

𝑗=1

                                              (2.1) 
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Next, we look for another linear combination 𝜶′2𝑿, which is uncorrelated with 𝜶′1𝑿 and has 

the maximum variance. Repeating the same algorithm, we can find up to p vectors that are 

called the Principal Components. The goal of the algorithm however, is to account for all of 

the variance in data by using a number of principal components much less than p .  

Generally, if a set of data with high number of variables has significant correlations among 

the variables, then the first few principal components will account for most of the 

variation in the original variables. In contrast, the last few principal components will 

belong to directions with little to no variation, identifying the closest to linear 

relationships in the original variables. An example of a dataset transformed into PCA 

space is shown in Figure 2. 2.  

 

Figure 2. 2 - dataset with three classes of data transformed to the first two principal components 

The approach to finding the principal components are described by Jollife (2002) as 

following. Considering Σ as the covariance matrix of our vector of random variables X, this 

matrix consists of the variance of each element of X on the diagonal, and the covariances of 

every combination of variables in X on the other elements of the matrix. It turns out that each 

𝜶𝑘 in 𝜶′𝑘𝑿 is the kth eigenvector of Σ, corresponding to 𝜆𝑘, the kth largest eigenvalue of Σ. 

Additionally, the variance value for each PC is in fact their corresponding eigenvalue, but only 

in case of choosing 𝜶 to have unit length.  
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The following course of action is suggested by Jollife (2002) for deriving the principal 

components. First, 𝜶1 is considered in such way that the variance of 𝜶′𝑘𝑿 is maximized. 

Knowing that 𝑣𝑎𝑟(𝜶′1𝑿) = 𝜶
′
1𝚺𝜶1, it is clear that there is no finite 𝜶 that maximizes the 

expression and therefore another condition for 𝜶 has to be imposed. This condition is in fact 

the unit length as mentioned before, which is applied as 𝜶′1𝜶1 = 𝟏. In order to maximize the 

variance value under this condition the technique of Lagrange multipliers is used, where the 

maximized equations transform into 

𝜶′1𝚺𝜶1 −  𝜆(𝜶
′
1𝜶1 − 1) = 0 (2.2) 

Where 𝜆 is a Lagrange multiplier. This results in 

(𝚺 −  𝜆𝑰𝑃)𝜶1 = 0 (2.3) 

With 𝑰𝑃 as an identity matrix with dimensions p. From this equation, it is obvious that  𝜶1 is 

an eigenvector of 𝚺, and since for the first PC the largest variance 𝜶′1𝚺𝜶1 = 𝜆1 is desired, this 

eigenvector corresponds to the first and largest eigenvalue of 𝚺. It can be proven that the other 

principal components are also eigenvectors of 𝚺, corresponding to eigenvalues in an orderly 

fashion.  

A major application for PCA is in developing control charts for processes. The two more usual 

methods for developing such control charts based on PCA analysis are Hotelling’s 𝑇2 statistic 

and the Q-statistic, also known as the Squared Prediction Error (SPE) (Ketelaere, Schmitt). 

2.3.1.2. Hotelling’s statistic 

Hotelling’s 𝑇2 statistic is describe as  “an important tools for inference about the center of a 

multivariate normal population”  (Willems et al. 2002, p. 125). It was first introduced by 

Hotelling (1931) as an extension on the t-distribution by Student (1908) to multivariate 

statistics.  

The test is used in its practical form as following according to Penha (2001). First, it is 

necessary to decide how many of the principal components are to be retained for the test. A 

suggestion is to keep all the principal components with the value of their variance greater 

than 1. This number is denoted 𝑘. 𝑷 is set to be the 𝑝 × 𝑝 loading matrix, resulted from the 

PCA, and 𝑷𝑘 is the first 𝑘 columns of that matrix. 𝒙̅ denotes the mean of all the data points. 

The 𝑇2value for any point 𝒙 in a 𝑝 dimensional space is calculated 

𝑇2 = (𝒙 − 𝒙̅)′𝑷𝑘𝚲𝑘
−1𝑷𝑘

′ (𝒙 − 𝒙̅)                                                                                          (2.4) 
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Where Λ𝑘
  is a diagonal matrix with dimensions 𝑘  where the elements are the 𝑘 largest 

eigenvalues of the data covariance matrix 𝜆1 to 𝜆𝑘, which are also the variance values for the 

principal components. 

Λ𝑘
 = [

𝜆1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆𝑘

]                                                                                                   (2.5) 

 𝑇2 is in fact the Mahalanobis distance of 𝒙 in PCA space, a measurement proposed by  

Mahalanobis (1936). 

If the total number of points in the dataset in denoted by 𝑛, then the control limit for Hotelling’s 

𝑇2 is calculated 

𝑇𝛼
2 =

𝑘(𝑛2 − 1)

𝑛(𝑛 − 𝑘)
𝐹𝑘,𝑛−1(𝛼)                                                                                       (2.6) 

Where F is 𝐹𝑘,𝑛−1(𝛼) is the (1 − 𝛼) percentile of the F-distribution with 𝑘 and 𝑛 − 𝑘 degrees 

of freedom.  This threshold assumes anomaly to be the 𝛼 percentile outliers of the data in terms 

of distance to the center of the data in PCA space. 

F-distribution is a continues probability distribution introduced by Snedecor (1989). The 

probability density function of F-distribution for a random variable 𝑥 and degrees of freedom 

𝑑1 and 𝑑2 is 

𝑓(𝑥; 𝑑1, 𝑑2) =

√ (𝑑1𝑥)
𝑑1𝑑2

𝑑2

(𝑑1𝑥 + 𝑑2)
𝑑1+𝑑2

𝑥𝐵(𝑑1/2, 𝑑2/2)
                                                                         (2.7) 

 

Where 𝐵 is the beta function 

𝐵 (
𝑑1
2
,
𝑑2
2
) = ∫ 𝑡

𝑑1
2
−1

1

0

(1 − 𝑡)
𝑑2
2
−1𝑑𝑡                                                                   (2.8) 
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2.3.1.3. Q-statistic 

Q-statistic is another control process defined in PCA space. It is defined as a Control procedure 

for residuals associated with PCA in the original paper (Jackson, Mudholkar 1979). Also 

described as the sum of squares of the residuals, the Q-statistic for the vector 𝒙 is 

𝑄 = (𝒙 − 𝒙̅)′(𝑰 − 𝑷𝑘𝑷𝑘
′ )(𝒙 − 𝒙̅)                                                                           (2.9) 

Q-statistic is in fact the quadratic orthogonal distance to the PCA space. The control limit for 

𝑄 is calculated  

𝑄𝛼 = 𝜃1[
𝐶𝛼√2𝜃2ℎ0

2

𝜃1
+ 1 +

𝜃2ℎ0(ℎ0 − 1)

𝜃1
2 ] 

1
ℎ0                                                  (2.10) 

Where 

𝜃𝑖 =∑ 𝜆𝑗
𝑖  , 𝑖 = 1, 2, 3                                                                                 (2.11)

𝑝

𝑗=𝑘+1
 

ℎ0 = 1 −
2𝜃1𝜃3

3𝜃2
2                                                                                                        (2.12) 

And 𝐶𝛼 is the (1 − 𝛼) percentile of the standard normal distribution. 

Geometrically for a point in PCA space, Hotelling’s 𝑇2 is the distance between the point and 

the center of all the points in the retained principal components hyperplane, and Q-statistic is 

the normal distance between the point and the said hyperplane. A simplified visual 

representation of this is shown in Figure 2. 3 for a 3-variable dataset with 2 retained principal 

components.  



16 

 

 

Figure 2. 3 - Hotelling and Q-statistics outliers representation in PCA space (Penha, Hines 2001) 

 

2.3.2. Kernel Density Estimation 

Kernel density estimation (KDE) is a non-parametric procedure used for visualization and 

regression purposes in data science. This method provides a simple and reliable estimate on 

the probability density function of random variables without the specification of a parametric 

model. In simple terms, KDE provides a simple way to find structure in a dataset without the 

need to assume a parametric model for the data. The main principles of this method, also 

referred to as Kernel smoothing techniques, can be extended to statistical problems in a wide 

range of applications such as signal processing, econometrics, engineering and medicine 

(Wand, Jones 1995).  

KDE, as it is used today was first introduced by Rosenblatt (1956) as a set of nonparametric 

estimates of a Density function. At around the same time, Parzen (1962) developed the same 

method independently, presenting it as a method for estimation of probability Density function 

and mode. The creation of the method is therefore accredited to both authors.  

KDE is a counterpart to parametric regression models. These models make assumptions on 

the functional for of the regression function. It can be in a linear, parabolic, or any other form. 

The choice of a specific parametric model can be based on different scientific or experimental 

reason. However, the limitations of a parametric model hold true regardless of its derivation 
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method. The rigidity of restricting the model to belong to one parametric family is the main 

limitation of parametric models. The chosen of the parametric model, if not done carefully, can 

lead to incorrect conclusions in the regression analysis and therefore to misinterpretation of the 

data (Wand, Jones 1995).  

 

2.3.2.1. Univariate kernel density estimator 

 The method is first described in one dimension, called Univariate Kernel Density Estimator. 

Univariate KDE is most straight forward type of kernel estimators, making a thorough study 

of its properties possible (Wand, Jones 1995).  given a sample 𝑋1, … , 𝑋𝑛 with a continuous, 

univariate density f, the Kernel density estimator is 

𝑓(𝑥, ℎ) =
1

𝑛ℎ
∑𝐾(

𝑥 − 𝑋𝑖
ℎ

)

𝑛

𝑖=1

                                                                                             (2.13) 

Where K is kernel shape function and h is the bandwidth. In practice, the working principle of 

the method is that a kernel is placed on each of the data points, and the influence of the point 

is spread about its neighborhood. These influences are then added up to form the overall 

estimate. Different kernels can be used for different purposes, such as uniform, triangular, 

Gaussian, and Epanechnikov kernels. Figure 2. 4 shows a schematic of univariate kernel 

density estimate with Gaussian kernels. 

 

Figure 2. 4 - Univariate kernel density estimation using gaussian kernels (Wand, Jones 1995).  
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Wand and Jones (1995) showed that the shape of the kernel function is not a particularly 

important choice. However, the value chosen for bandwidth h, plays a very important role in 

the quality of the estimation. If the value of h is too high, then the curve will be overfitted, and 

in contrast a number too high for h results in an estimation that is not fitting to the true density 

of observations.  

Another factor that influences the quality of the estimation is the shape of the kernel function 

K. The shape function K is usually defined as a symmetric and unimodal density. The reason 

for these choices, aside from the simplicity of interpretation, is a criterion for admissibility of 

kernel shape functions introduced by Cline (1988). Based on this criterion, a kernel density 

estimator is considered admissible, if it compared to other kernel estimators, produces the 

smallest value for mean integrated square error among all densities and sample sizes. This 

means the kernel must have nonnegative Fourier transforms that is bounded by 1.  

Among all of the possible Kernels, the optimal Kernel shape is found by Hodges, Lehmann 

(1956) to be of the form  

𝐾𝑎(𝑥) =
3

4
{1 − 𝑥2 (5𝑎2)⁄ }/(51 2⁄ 𝑎)1{|𝑥|<51 2⁄ 𝑎}                                            (2.14) 

Where 𝑎 is an arbitrary scale function. Epanechnikov (1969) described the optimality 

properties in density estimation setting for the simplest version of 𝐾𝑎 with choosing 

 𝑎 =  √1 5⁄ . Often referred to as the Epanechnikov kernel, it has the formula 

𝐾∗(𝑥) =
3

4
(1 − 𝑥2)1{|𝑥|<1}                                                                                  (2.15) 

The graph for this kernel is shown in Figure 2. 5 in comparison with uniform, Gaussian, and 

triangular kernels. 
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Figure 2. 5 - Comparison between some conventional kernel shapes 

 

Although the Epanechnikov kernel has the optimal shape for kernel estimation settings, Wand 

and Jones (1995) showed the inferiority of other unimodal densities such as the Gaussian in 

estimation performance is not significant. Therefore, the choice of the Kernel is often based on 

other criteria such as computational efficiency. For example, uniform kernels are not very 

popular since the resultant estimate is piecewise constant. Based on such reasons, even the 

Epanechnikov kernel is considered unattractive, due to the discontinuous first derivative 

produced by the estimate.   

2.3.2.2. Multivariate kernel density estimator 

The extension of the univariate kernel density estimation to more dimensions (𝑥 ∈ ℝ𝑑) is 

called The Multivariate Kernel Density Estimator. There are challenges with extending this 

method to higher dimensions. First of all, the most general parameterization of the kernel 

estimator requires many more bandwidth parameters than the univariate case (Wand, Jones 

1995). The other problem is that the variation in the data makes it necessary for the sample size 

to be very large for kernel estimation analysis to be relevant. Also referred to as the curse of 

dimensionality (Kárný, Warwick 1997), it can be shown that reasonable nonparametric density 

estimation proves to be very difficult in more than five dimensions. 

In spite of all the challenges, Silverman (1998) has proved kernel density estimators to be 

powerful tools for analyzing bivariate structures. Scott (2015) even went on further to show 
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the important role of multivariate kernel density estimation in visualizing the structures of 

three- and four-dimensional datasets.   

According to Deheuvels (1977) the extension in its most general form is 

𝑓(𝑥,𝑯) =
1

𝑛
∑𝐾𝑯(𝑥 − 𝑿𝑖)

𝑛

𝑖=1

                                                                                 (2.16) 

   

Where  

𝐾𝑯(𝑥) = |𝑯|
−1/2𝐾(𝑯−1/2𝑥)                                                                                (2.17) 

𝑯 is a symmetric positive definite 𝑑 × 𝑑 matrix called the bandwidth matrix, and 𝐾 is a d-

variate kernel function satisfying 

∫𝐾(𝑥)𝑑𝑥 = 1                                                                                                          (2.18) 

As mentioned, the choice of bandwidth in this method is complex and sensitive. Therefore, 

Cacoullos (1966) assumed a single bandwidth estimator by assuming 𝑯 to be of form ℎ2𝑰, 

leading to the general formula 

𝑓(𝑥, ℎ) = 𝑛−1ℎ−𝑑∑𝐾{(𝑥 − 𝑿𝑖) ℎ⁄ }

𝑛

𝑖=1

                                                                          (2.19) 

The kernel function is usually chosen to be a d-variate probability density function. There are 

different techniques to generate multivariate density functions based on a symmetric univariate 

kernel. However, the most popular choice for 𝐾 is the standard d-variate normal density (Wand, 

Jones 1995), which is in the form 

𝐾(𝑥) = (2𝜋)−
𝑑
2exp (−

1

2
𝑥𝑇𝑥)                                                                            (2.20) 

The kernel estimator is formed by centering a bivariate kernel function on each of the data 

points. Then contours are formed on the biplot with the height of the contour averaged from 

the kernel density estimate (Wand, Jones 1995). An example is shown for a bivariate dataset 

in Figure 2. 6. 
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Figure 2. 6 - Bivariate kernel density estimation (Wand, Jones 1995) 

 

2.3.2.3. Binned kernel density estimator 

Computation proves to be an issue in practical calculation of kernel estimators. Considering 

the problem of obtaining a kernel density estimate over a space with 𝑀 grid points 𝑔1, … , 𝑔𝑚, 

a direct approach is possible due to explicit formulation of the kernel estimator (Wand, Jones 

1995). The direct approach is calculating  

𝑓(𝑔𝑗; ℎ) =  𝑛
−1∑𝐾ℎ(𝑔𝑗 − 𝑿𝑖)

𝑛

𝑖=1

,   𝑗 = 1,… ,𝑀                                              (2.21) 

This calculation requires 𝑛𝑀 kernel evaluations to compute the whole distribution, and 

therefore is computationally expensive (Wand, Jones 1995).When working with large samples, 

in order to increase the computational speed of the calculation, kernel estimator is replaced by 

approximations.  

The main idea behind such approximations is to replace data with weight factors denoted by 

𝑐𝑗, which is a representation of the amount of data that is near 𝑔𝑗. The binned kernel density 

estimator (BKDE) is one of the ways to approximate the kernel estimation. It uses a discrete 

convolution structure that can be computed quickly using the fast Fourier transform, which 

results in immense reduction in number of kernel evaluations (Wand, Jones 1995).  
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Supposing that all of data is contained in an interval [𝑎, 𝑏], after discretizing or binning the 

data based on the proximity of the data to an equally space grid, and storing the grid count 

values in 𝑐1, … , 𝑐𝑀 , The BKDE distribution is calculated (Silverman 1982) 

𝑓𝑗 = ∑ 𝑐𝑗 − 𝑙𝜅𝑙

𝑀−1

𝑙=1−𝑀

,   𝑗 = 1,… ,𝑀                                                                       (2.22) 

 

Where  

𝜅𝑙 = 𝑛
−1𝐾ℎ (

(𝑏 − 𝑎)𝑙

𝑀 − 1
)                                                                                         (2.23) 

 

2.3.3. Artificial Neuron Networks 

Artificial Neuron Networks (ANNs) are circuits designed for two distinctive purposes. First, 

which is the origin of the term, is an attempt to model the actual neurons in an actual brain to 

describe biophysical phenomena happening to the signals and identifying primitive elements 

of information process inside the brain. The other broader purpose, is to develop heuristically 

conceived devices and methods inspired by the biological function of simple components of 

the brain. Most of the studies tracing back to the early days of the field, focus on the former, 

whereas the present day studies tend to focus on development of information-processing 

devices (Kohonen 2001).  

The study of ANNs is possible to undertake with three different approaches: models, 

paradigms, and methods. A model is a finite set of variables and their interactions that describe 

a real system, according to basic simplified laws of nature. A paradigm is an approach to 

simplify complex problems, with directing the selection of variables and setting up the models, 

as well as interpretation of data.  In other words, a paradigm is a case study of a general theory. 

A method is a set of directions that is developed with sole focus on effectiveness in application, 

with no regards to whether it is developed based on a model or a paradigm, or neither (Kohonen 

2001). 

While the line between these approaches is often blurred in contemporary theoretical research, 

it comes down to two main aspects: the scholars, who are trying to understand the brain more 
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deeply, as opposed to inventors, who are focused on developing new technologies (Kohonen 

2001).  

Kohonen (2001) categorizes ANN in its pure form into three main groups: signal-transfer 

networks, state-transfer networks, and competitive-learning networks. Additionally, many 

mathematical statistics methods such as PCA and ICA (independent component analysis) are 

considered to be ANNs. Many ANN realizations have been proposed for statistical techniques 

(Oja 1992). 

Competitive-learning networks are a category of ANNs that is based on competition between 

the cells. Every cell receives identical information, where they compete on that information. 

There is one winner cell, which acquires full activity. This results in all the other cells’ activity 

being suppressed, making the winner the only cell that is learning the input. Through repetition 

of these competitions for every input, every cell develops a sensitivity for a different domain 

of signal values (Kohonen 2001).  

Kohonen (2001) formalized an algorithmic form  in order to create globally ordered maps of 

various sensory features onto a layered neural network. This algorithm, called The Self-

Organizing Map (SOM), is defined as “an ‘elastic net’ of points (parameter, reference, or 

codebook vectors) that are fitted to the input signal space to approximate its density function 

in an ordered fashion” (Kohonen 2001, p. 86). The definition suggests that like many other 

clustering techniques, SOM attempts to create abstraction, specifically through reduction of 

high dimensional data to two-dimensional visualization.    

2.3.3.1. Classical Vector Quantization 

SOM is built upon the idea of feature sensitive filter by competitive learning, first introduced 

in scalar form by Lloyd (1982) and in vector form by Forgy (1965). The idea, developed to the 

classical vector quantization (VQ), is a standard technique in modern digital signal processing. 

VQ partitions the space of input data into a finite number of regions, each defined by a single 

model vector, known as the codebook vector. The goal in mind for choosing the codebook 

vectors is to minimize the mean distance of input data from the best-matching codebook vector 

(Kohonen 2013).  

Considering the input data as n-dimensional vectors denoted by 𝒙, codebook vectors by 𝒎𝒊, 

and the index 𝒄 denoting a particular vector 𝒎𝒄, the one with the smallest distance from 𝒙. 𝒄 is 

found as 



24 

 

𝑐 = 𝑎𝑟𝑔𝑚𝑖𝑛⏟    
𝑖

{‖𝒙 −𝒎𝒊‖}                                                                                       (2.24) 

And the mean quantization error is defined as 

𝐸 = ∫‖𝒙 −𝒎𝒊‖
2𝑝(𝒙)𝑑𝑉

 

𝑉

                                                                                    (2.25) 

Where 𝑝(𝒙) is the probability density of 𝒙 and 𝑉 is the data space. This function, although in 

a highly non-linear gradient-descent procedure, converges to a local minimum (Kohonen 

2013). Additionally, Linde et al. (1980) showed that for a finite dataset, a batch computation 

method is possible to formulate. 

2.3.3.2. Self-Organizing Maps 

Kohonen (2001) formulated Self Organizing-Maps (SOM) as a successor to VQ, with the 

addition of spatial and global order to the SOM nodes (equivalent of codebook vectors in VQ). 

In order to elaborate the learning principles and the mathematics of the algorithm, Kohonen 

(2013) expresses underlying central idea as follows. “Every input data item shall select the 

model that matches best with the input item, and this model, as well as a subset of its spatial 

neighbors in the grid, shall be modified for better matching” (Kohonen 2013, p. 53). 

The SOM method is formulated in two main algorithms; The Original, stepwise recursive 

algorithm, and the batch computation algorithm. The recursive method is only developed for 

technical reasons and comparison purposes with other methods. Therefore, the batch 

computation version is the method that is used for practical computations. The initial 

representation of the algorithm is however still more tangible using the stepwise form 

(Kohonen 2013).  

 

Figure 2. 7 - visual representation of a self-organizing map. Mc is the best matching unit among the 

set of models Mi that X is presented to, and the models in its neighborhood (larger circle) match 

better with X that the rest of the models (Kohonen 2013).  
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Figure 2. 7 Illustration of a self-organizing map. An input data item X is broadcast to a set of 

models Mi, of which Mc matches best with X. All models that lie in the neighborhood (larger 

circle) of Mc in the grid match better with X than with the rest. 

The original, stepwise recursive SOM algorithm is first discussed. As seen in Figure 2. 7, the 

input data and the model vector are considered a sequence consisting 𝑡 steps of n-dimensional 

vectors 𝒙 and 𝒎𝑖, in the form of {𝑿(𝑡)} and {𝒎𝑖(𝑡)} , respectively. The formulation of the 

original SOM for finding the self-organized map is 

𝒎𝑖(𝑡 + 1) = 𝒎𝑖(𝑡) + ℎ𝑐𝑖(𝑡)[𝒙(𝑡) −𝒎𝑖(𝑡)]                                                    (2.26) 

  

In this equation, ℎ𝑐𝑖(𝑡), the so-called neighborhood function, is the equivalent of a kernel in 

smoothing methods. Similar to VQ, the subscript 𝑐 identifies the winner node, where 

𝑐 = 𝑎𝑟𝑔𝑚𝑖𝑛⏟    
𝑖

{‖𝒙(𝑡) −𝒎𝒊(𝑡)‖}                                                                            (2.27)

  

In every recursive step, first 𝒙(𝑡) selects a winner node according to (2.27), and the model at 

the winner node and the nodes in its spatial neighborhood are updated according to (2.26). 

The function ℎ𝑐𝑖(𝑡) plays the most important role in self organization of the algorithm, as it 

determines the rate of changes in node positions. There are many choices for the form of ℎ𝑐𝑖(𝑡), 

such as a circle around the winner, or in its most simple form, ℎ𝑐𝑖(𝑡) = 1.  A popular choice 

for this function is 

ℎ𝑐𝑖(𝑡) = 𝛼(𝑡) ∗ exp[− 𝑠𝑞𝑑𝑖𝑠𝑡(𝑐, 𝑖) 2𝜎
2(𝑡)⁄ ]                                                    (2.28) 

 

where 𝛼(𝑡) and 𝜎(𝑡) are monotonic decreasing scalar functions of 𝑡, and 𝑠𝑞𝑑𝑖𝑠𝑡(𝑐, 𝑖) is the 

square of geometric distance between 𝑐 and 𝑖 in the grid.  𝜎(𝑡) is chosen in a way that is large 

in the beginning, around half of the diameter of the grid, and it gradually decreases in a manner 

that after around 1000 it is a fraction of it, but never reaches zero.  

For the algorithm to converge to a stable state, it should be shown that the values of 𝒎𝑖(𝑡 + 1) 

and 𝒎𝑖(𝑡) will be equal for 𝑡 leading to infinity, while the neighborhood function is non-zero. 

Comparing this to (2.27) results in the requirement of 

∀𝑖, 𝐸𝑡{ℎ𝑐𝑖(𝑡)[𝒙(𝑡) −𝒎𝑖(𝑡)]} = 0                                                               (2.29) 
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Where 𝐸𝑡 is the mathematical expectation value operator over 𝑡. The independent value of  

𝒎𝑖(𝑡) for convergence is denoted by 𝒎𝑖
∗, and it can be shown that 

𝒎𝑖
∗ =∑ℎ𝑐𝑖𝒙(𝑡)

𝑡

∑ℎ𝑐𝑖
𝑡

⁄                                                                                                   (2.30) 

  

The equation (2.30), although implicit, due to dependence of 𝑐 to 𝒙(𝑡), is considered as the 

basis for the iterative solution of 𝒎𝑖(𝑡), or the batch computation algorithm. This equation is 

simplified by substituting 𝒙(𝑡) with mean value of points that are closest to each node 

𝒎𝑖
∗ =∑𝑛𝑗ℎ𝑗𝑖𝒙𝑚.𝑗

𝑗

∑𝑛𝑗ℎ𝑗𝑖
𝑗

⁄                                                                              (2.31) 

Where 𝑛𝑗  and 𝒙𝑚.𝑗 the number and the mean vector of the inputs that have the model 𝒎𝑖
∗ as 

their closest, respectively.  

SOM can organize itself regardless of the initial values for 𝒎𝑖. However, since the algorithm 

is often desired to converge as quickly as possible, an optimal choice of initial values is a matter 

of discussion. A regular two-dimensional sequence of vectors along a hyperplane resulted from 

the first two principal components are suggested by Kohonen (2001).  

The batch computation algorithm of SOM is as follows. In every step, each input vector is 

compared to all of the model vectors, adding to the sublist of the winner node. To simplify, the 

neighborhood function here is considered to have value 1 for the neighborhood of each node, 

and value zero for the other nodes. Then, the mean of every vector present in the sublist 

corresponding to every node, as well as the neighborhood nodes is calculated. This value is 

calculated for every node. These mean values then replace the old values of  𝒎𝑖, therefore 

completing one step.  

The mean that is calculated in this algorithm is called generalized median. It is defined as 

“…the item that has the smallest sum of distances from the other items in the set” (Kohonen 

2013, p. 58). This set of tasks is iterated, updating the node positions in every step, until the 

values reach a steady state, where they do not change in position anymore with every iteration. 

In practice, the means are formed as weighted averages. A schematic of the process is shown 

in Figure 2. 8. The batch computation algorithm is proved to converge by Cheng (1997).  
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Figure 2. 8 – SOM batch process. The input x(t) is placed in a sublist corresponding to its best 

matching unit, and the new value of the models are calculated as generalized medians over the 

neighborhood sublists (Kohonen 2013). 

SOM is one of the most studied and cited algorithms in recent science. There are many 

variations and modifications suggested for the algorithm, such as recursive self-organizing 

maps (Voegtlin, Dominey 2001), self-organizing time map (Sarlin 2013), and Growing Self-

Organizing Map (GSOM) (Alahakoon et al. 2000). 

2.3.3.3. Growing Self-Organizing Maps 

Dynamic self-organizing maps with controlled growth, Also known as Growing Self-

Organizing Maps (GSOM), is a feature map model proposed by Alahakoon et al. (2000). The 

motivation for developing such algorithm is described as overcoming the limitation of the 

original SOM algorithm, namely the need for determination of the structure of network prior 

to performing the algorithm (Fritzke 1991), as well as the incompleteness of the topology 

preservation that is provided by SOM. Another limitation of SOM according to Alahakoon et 

al. is lack of awareness on the structure of the data to the user. This results in difficulties in 
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setting the size of the network, and realizing if the resulting cluster structure is in fact accurate 

in describing the structure of the data.  

Alahakoon et al. (2000) argue that these problems can be solved if the shape and the size of the 

network are determined during the training of the network. Therefore, the GSOM algorithm 

was developed as the following. 

In the first step, the algorithm is initialized. The weight vectors corresponding to the starting 

nodes are defined and the growth threshold (GT) is calculated based on the user requirements. 

This is achieved through a value called the spread factor (SF), which is a number between 0 

and 1 that is defined by the user and determines the GSOM independent of the dimensionality 

of the input. GT is calculated from SF and acts as a threshold for initiating node generation. 

The higher the GT value, the less the map is allowed to spread out. 

The second step is called the growing phase. It starts with presenting the input to the network. 

Similar to SOM, the node with closest weight vector to the input vector is recognized as the 

winner. Afterwards, the weight vector adaptation is applied to the neighborhood vectors, 

including the winner itself. This neighborhood is smaller compared to that of SOM. Also, the 

learning rate is reduced exponentially over iteration, which is another difference between 

GSOM and SOM. The weight adaptation is performed using the following formulation 

𝑤𝑗(𝑘 + 1) {
𝑤𝑗(𝑘),       𝑗 ∉  𝑁𝑘+1

𝑤𝑗(𝑘) + 𝐿𝑅(𝑘) × (𝑥𝑘 −𝑤𝑗(𝑘),     𝑗 ∈  𝑁𝑘+1
                               (2.32) 

Where 𝐿𝑅(𝑘) is the learning rate at 𝑘𝑡ℎ iteration, and it is approaching zero for 𝑘 → ∞ . 𝑤𝑗(𝑘) 

and 𝑤𝑗(𝑘 + 1) are weight vectors and  𝑁𝑘+1 is the neighborhood of the winning node.  

The error value for a node consists of the accumulation of the distances between the weight 

vector and all the input vectors that are corresponding to the said node. If this value for a node 

has a significant part in the total error, the area that is identified with this node is under 

represented. Therefore, a new node is generated in the neighborhood of the said node. Error 

distance is defined 

𝐸𝑖(𝑡 + 1) = 𝐸𝑖(𝑡) + √∑(𝑣𝑘 −𝑤𝑖,𝑘)
2

𝐷𝑖𝑚

𝑘=1

                                                             (2.33) 
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Where 𝑖 denotes the node that the function is calculated for, 𝑡 signifies the time or iteration, 

𝐷𝑖𝑚 is the number of variants in the input data, and 𝑤 and 𝑣 are input and weight vectors, 

respectively. This error distance accumulates for all the nodes to 

𝑄𝐸 =∑𝐸𝑖                                                                                                                (2.34)

𝑁

𝑖=1

 

Where 𝑁 is the number of the nodes in the network. 𝑄𝐸 acts as a measurement to determine 

the need for a new node. If a node’s contribution to 𝑄𝐸 is high, a new node is created in its 

neighborhood to share the load.  

The process of adding node only happens to boundary nodes, the ones that have at least one 

neighboring position without a node. If a boundary node is chosen for addition of nodes, then 

every free neighboring position is filled with a new node as seen in Figure 2. 9. Although this 

process creates redundant nodes, it is still more practical than finding a proper position for the 

new node. The redundant will never win and therefore will be removed after a few iterations. 

In case a non-boundary node is chosen due to high error, the weight vectors are redistributed 

in its neighborhood. 

 

Figure 2. 9 - Node generation process in GSOM (Alahakoon et al. 2000) 

Since the older nodes around the new node have already been partly organized, assuming a 

random weight for the new node will introduce non-matching weight vectors. To avoid that, 

the weight of the new node is calculated to merge with the flow of the older nodes according 

to guidelines by Alahakoon et al. (2000). 

The growing phase is iterated until all the input values have been presented to the algorithm 

and the node growth is near stable. At this point the algorithm enters the smoothing phase¸ 

where the learning rate is reduced and the weights for the winner nodes and their neighborhoods 

are adapted. The introduction of new nodes stops at the beginning of the smoothing phase. The 
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smoothing phase and subsequently the algorithm converges when the error values of the nodes 

reach very small values (Alahakoon et al. 2000).  

The theoretical advantages of GSOM compared to the original SOM and other similar 

algorithms are described by Alahakoon et al. (2000) as learning rate adaptation, localized 

neighborhood weight adaptation, and error distribution of non-boundary nodes.  
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3. Development of fault detection method 

 

This chapter is dedicated to in-detail description and evaluation of the novel fault detection 

method that is developed in this study. The main aim of this method is to be used as a basis for 

asset health monitoring. Proper health monitoring can result in optimizing maintenance 

schedules as well as avoiding unplanned downtimes. 

Predictive maintenance in general has always been a subject of interest to chemical and process 

industries due to its money saving potential. Asset health monitoring specifically plays an 

important role in improving overall plant reliability, and therefore has received growing 

attention in the industry in the recent years. However, this attention is focused on a very small 

group of assets called critical assets. 

Critical assets in chemical industry are those that are either critical in terms of safety and 

security, or the ones that are financially sensitive and have an important role in the profitability 

of the plant. These assets are usually monitored using highly specialized software technology, 

whereas many other assets of less importance are not monitored at all. The data for these assets 

are usually stored in a historian device where no further analysis is carried out. These assets, if 

monitored collectively, have a potential to improve process drastically by reducing downtime 

and expenses of maintenance. The fault detection method presented in this study is developed 

with special interest in all the assets that are not monitored in today’s industry, in specific to 

offer a generic monitoring solution for these assets.  

In order to be applicable to a wide range of assets, the method has to be developed with a data-

driven approach. As opposed to model-based methods, this method does not require any 

specific measurement or information on the distribution of data and relations between 

variables. Instead, this method relies on the with the process engineer to determine and identify 

the sensitive variables and process states, as well as normal operation zones and failure modes. 

The basic assumption underlying any data-driven method is that the relations between the 

measurements differ in normal and abnormal behavior. More generally, different states of a 

process can be traced in correlations between the measurements of the process. Any process is 

assumed to operate under normal conditions most of the time, which results in mostly similar 

relationship between measurements; therefore, searching for broken or different relationships 

between the variables will lead to abnormal periods of operation. In any visualization of data 



32 

 

there are dense areas with points showing normal operation, as opposed to more parse areas for 

outliers, which point to anomalies. 

There are two main approaches in data-driven methods with regards to training data and pre-

determined information. In the first approach, some periods of time in the process history are 

determined by the process expert as normal operation periods. The training of algorithms with 

this approach are handled with the use of the normal operation data, and resulting monitoring 

system utilizes control charts to identify the points as normal or abnormal. A schematic of this 

approach is shown in Figure 3. 1.  

 

Figure 3. 1 - Normal data training approach 

The second approach, assumes various operation zones that are considered normal, as well as 

different failure modes instead of general abnormal behavior. Methods based on this approach 

utilize clustering methods to separate the data into different groups. This approach is visualized 

in Figure 3. 2.  

 

Figure 3. 2 - Clustering training approach 
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clustering methods are unsupervised techniques for grouping similar observations within a 

dataset. Here the unsupervised technique refers to a problem finding hidden structure within 

unlabeled data. In clustering, the identity of clusters is not pre-determined by the data scientist, 

therefore these methods are categorized as unsupervised (Dietrich et al. 2015). 

Although the first approach performs with more stable results, it fails to explain different 

regimen of failure, which is an important diagnostic result. In addition, methods based on this 

approach are unable to detect the addition of novel failures and new normal operation zones. 

The clustering approach in data-driven methods makes up for these shortcomings, with the 

price of difficulty in interpreting results and making robust, and therefore are the basis for the 

fault detection method developed in this study. These methods also do not require 

determination of periods before training phase. 

Seeing as the sensor data from assets in chemical industry usually consist of numerous 

variables, the process of clustering using the conventional techniques is somewhat problematic. 

Based on the aforementioned “curse of dimensionality” phenomenon, as the number of 

dimensions increases, the performance of ordinary clustering techniques degrades. A way to 

circumvent this problem is to use dimensionality reduction techniques, such as PCA in the 

linear data, and SOM based methods in nonlinear cases. These techniques are studied in more 

detail in Section 2.3.  

The fault detection method described in this study is robust and adaptive. It truly functions in 

the multivariate space, making use of the latest developments in self-organizing maps. This 

method makes monitoring of highly non-linear data in multiple regimen systems possible, since 

it does not make any assumption the distribution of the data.  

Another characteristic of the fault detection method is that this method is designed to perform 

the analysis with no regards to the type of the measurements available. Although many methods 

for monitoring any specific asset is developed and available to use, these methods usually 

require a specific set of measurements for each asset. On the other hand, these assets are often 

not equipped with the sensors necessary to provide the measurements for the methods, 

especially if the asset is not a central part of the process. It should be noted that failures in these 

assets can be as harmful to the process as the central assets. 

According Himmelblau (1978), when carrying out the fault detection tasks using a computer, 

is that an important point for the algorithms to function properly is the requirement of 

predefining the possible malfunctions to the system. However, if an operator is monitoring the 
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process and diagnoses a period of process as faulty, the two stages of definition and 

classification do not have to carried out consequentially, as they do in the case of complete 

automated monitoring. This is an important point taken into consideration in developing this 

method. Therefore, close attention to the analysis by the operator will be beneficial in defining 

novel faults and unexpected anomalies.   

 

3.1. Fault detection method 

In this chapter, the novel method of data-driven fault detection for asset monitoring is presented 

in detail. A sample data frame used to illustrate the results. The data frame is one of many 

samples that is included in R, called ‘wine’. These data are the results of a chemical analysis 

of 178 different wines grown in the same region and derived from different cultivars in Italy. 

The analysis determined the quantities of 13 constituents found for these wines. The 

correlations between the variables can be seen in Figure 3. 3. 

 

Figure 3. 3 - Wine data correlogram. Color blue denoted positive correlation and red denotes 

negative correlation. The intensity of the colors is an indication of the value, with higher values of 

correlation having more intense colors.  

The algorithm is presented in a step-by-step approach.  
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3.2.1. Pre-processing and parameter definition 

In the beginning, the data is introduced to the algorithm. The ideal data for this algorithm 

consists of a data frame consisting of data points that are used for training the algorithm, as 

well as a vector of the same length containing the date and time for the measurement of each 

data point. Additionally, a data frame containing some data points that signify known failure 

periods can be introduced to system to verify the results.  

As pre-processing, the data frames are scaled to have a zero mean and standard deviation one 

for each column (variable). This step results in the elimination of the influences of physical 

nature of measurements in data variation. Therefore, the data is in a physical sense 

dimensionless, and every variable in the data is of the same scale and can be treated the same 

manner. 

Some of the analysis parameters are defined in this step as well. These parameters needed for 

the analysis are 

1. Threshold for PCA control charts denoted by 𝛼 (implemented in the code as  

𝑎 = 1 − 𝛼), which has a default value 0.05. 

2. BKDE anomaly score threshold denoted by AT, with a normal value 3. 

3. Spread factor for GSOM, with a range between 0 and 1 and a default value 0.9. 

It should be noted that due to formulation of these techniques, the value of these parameters 

usually does not affect the analysis noticeably, and therefore the default values are assumed to 

provide the desired results. However, optional fine tuning is possible in order to optimize the 

clustering to explain the physical phenomena.   

 

3.2.2. Kernel Density Estimate 

In the first step of the analysis, a series of 2D binned kernel Density Estimates are performed, 

and the distribution results are stored for later purposes. There will be a distribution for every 

possible combination of two variables in the data frame. For a data frame with 𝑝 variables, 

these distributions will be stored in 𝑓𝑘, where 𝑘 ∈ {1, … , (𝑝
2
)}. For example, in the wine sample 

data, there will be (13
2
) = 78 distributions produced and stored. 
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As it was mentioned in Section 2.3.2, it is required to define two bandwidth values for the 

BKDE analysis. For a data set containing 𝑛 points each with 𝑝 variables, that has every point 

of each variable stored in {𝒀𝑖, 𝑖 ∈ (1, … , 𝑝)}  these values are set as 

ℎ𝑖 = 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣. (𝒀𝑖)/𝑛
1 6⁄  

Linear binning is used to obtain the bin counts and the Fast Fourier Transform is used to 

perform the discrete convolutions. For each 𝑥1, 𝑥2 pair the kernel is centered on that location 

and the heights of the kernel, scaled by the bandwidths, at each data point are calculated. The 

output 𝑓 value at every location is the normalized sum of these heights. A bivariate Gaussian 

kernel is used for the algorithm.  

A 256 × 256 grid is set for the estimation, meaning that the probability value will be calculated 

for 256 equally spaced points in each direction. A measurement called anomaly score denoted 

by 𝐴𝑆𝑇 is defined for every point in each distribution as 

𝐴𝑆𝑇 = −log 
𝑓(𝑥1, 𝑥2)

max(𝑓)
 

In order to visualize the BKDE distributions, they are plotted in the form of contours based on 

their 𝐴𝑆𝑇 values with the data points. These plots are helpful in visualizing the operation zone 

of a process, especially if the training data only contains the normal operation data. An example 

for wine sample data is shown in Figure 3. 4. Such heatmaps can be produced for every 

combination of variables.  

The heatmaps produced by kernel estimation, as shown in Figure 3. 4, are bounded within 

visible boundaries. As mentioned before the BKDE is calculated within a grid, that is defined 

by the algorithm based on the limits of the data points. The estimation is not calculated outside 

of this grid, and that is the reason for visible boundaries of the maps. 

The heatmaps show a probability of points being located all around the plot with contours and 

colors, which can also be used as a basis for evaluating the anomaly of a point, given all the 

points in the training set are considered normal.  
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Figure 3. 4 - BKDE based heatmap for wine data 

The BKDE distributions are stored for later comparisons and analysis. 

 

3.2.3. Growing self-organizing map and clustering 

In this step, the growing self-organizing maps algorithm is solved for the scaled data frame. 

The only input needed for the calculation is the Spread factor, as described in Section 2.3.3. 

The training progress for the wine sample data is shown in Figure 3. 5. A discontinuity is visible 

in the mean distance to unit value at the point of transition from growing phase to smoothing 

phase. The reason is the sudden change in the learning rate during the transition from growing 

phase to smoothing phase, as described in Section 2.3.3. 
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Figure 3. 5 - GSOM training progress for wine data 

Figure 3. 6 shows the output of the GSOM calculation in the form of the positions of the GSOM 

nodes, as well as the number of points that have determined each node as their best matching 

unit. As can be seen, the number and the position of the nodes in GSOM are arbitrary, as 

described in Section 2.3.3. 

 

Figure 3. 6 - Wine data mapped to the GSOM 
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In the next step, GSOM will be categorized into a number of clusters denoted by NC. There are 

different ways to determine the number of clusters that is suitable for a data frame. Best would 

be to inquire the subject matter expert on the number of the operation zones in the process and 

the number of known failure modes. Then, if the training data contains normal operation only, 

the number of clusters will be equal to the number of operation zones since the purpose of 

clustering the data is in fact to find the operation zones. If the training data contains both normal 

operation zones as well as some failure mode data, then the number of clusters equals the 

number of normal operation zones with the addition of the number of known failure modes.  

However, this information might not be available for a process, especially in the first time that 

data from a process is being analyzed. Therefore, a generic method for determining the number 

of clusters is suggested base on K-means clustering. Although the final clustering of the data 

is based on hierarchical clustering method, K-means provides a quick and feasible 

measurement for comparing the hypothetical cases of the clustering. In this method, the sum 

of squares for every group in a K-means clustering is calculated. These values are added to 

result one value called Within Cluster Sum of Squares (WCSS). The value of WCSS is 

compared for different cases of clustering based on K-means in a diagram seen in Figure 3. 7 

for wine test data.  

 

Figure 3. 7 - Estimation on the optimal number of clusters for wine data 
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A point with high difference in the trend before and after (elbow) on the diagram is a suitable 

candidate for clustering. Here for the wine sample data, three clusters are deemed suitable by 

this method. 

Although the number of clusters is determined by K-means method, the actual clustering of the 

GSOM nodes, and subsequently the data is done using the hierarchical clustering method. In 

this method, first a function computes and returns the distances between the rows of the GSOM 

nodes positions matrix. This procedure produces a so-called dissimilarity structure, which is 

the basis for hierarchical clustering. Initially, each object is assigned to its own cluster and then 

the algorithm proceeds iteratively, at each stage joining the two most similar clusters, 

continuing until there is just a single cluster. At each stage an adapted measurement for the 

distances between clusters are recomputed. The result of such algorithm can be visualized in a 

dendrogram, as shown for the wine sample data in Figure 3. 8.  

 

 

Figure 3. 8 – Dendrogram of GSOM nodes for wine data. The GSOM nodes are indicated by assigned 

numbers  

This clustering structure is then cut into groups, where the number of groups are specified by 

𝑁𝐶. The result of clustering the wine sample data is shown in Figure 3. 9.  



41 

 

 

Figure 3. 9 - Hierarchical clustering of GSOM nodes for wine data 

 

The position of the nodes with regards to the data points can be seen in two selected variables 

from the dimensions of the data frame in Figure 3. 10. The positioning of the nodes is in a way 

that more dense areas get more nodes. the clustering however, is more related to the distance 

between the nodes. It should be considered that this plot only shows two variables out of 13 

that is measured in the wine sample data. Therefore, the multi-dimensional distance between 

the nodes of different clusters might not be visible. Same plot can be produced for every 

combination of the variable. However, visualization of such high-dimensional data is 

problematic and requires some imagination. Perhaps considering the multi-dimensional 

distance between nodes is best perceived if regarded as scalar values, therefore the clustering 

can be viewed as a categorization process based on these values.  
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Figure 3. 10 - Position of GSOM nodes in comparison with wine data points. Each color signifies one 

of the clusters 

This clustering is based on the distance between the GSOM nodes. To further illustrate this 

point, the same procedure is applied on the results of a SOM on the same data. The SOM grid 

size is chosen to be as close to the GSOM as possible. For the wine sample data, a 7 × 6 grid 

with hexagonal topology is chosen to match the 41 node GSOM results. The point count for 

each node plot is shown in Figure 3. 11. 

 

Figure 3. 11 - Wine data mapped to the SOM 
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As mentioned before, a major difference between SOM and GSOM, which is the order in the 

position of nodes in the grid can be seen when comparing the two count plots. This makes the 

SOM plots more suitable for visualizing the node distances, especially with regards to the 

clustering. The result of clustering the SOM nodes based on the same hierarchical method used 

in GSOM clustering for wine sample data is shown in Figure 3. 12.  

 
 

Figure 3. 12 - SOM clustering boundaries and Distance between SOM nodes 

Figure 3. 12 visualizes the positioning of clusters on the nodes grid. Additionally, a comparison 

can be made between the clusters, and the distances between the nodes in the grid, verifying 

the clustering as a distance based method. The borders between the clusters signify an increased 

distance between the boundary nodes of each cluster. 

 

3.2.4. Categorization of clusters 

Considering that the clustering is performed using the general method, and there is no 

information available on the physical nature of the clusters with regards to the process 

operation zones, this step attempts to classify the clusters into two groups, normal operation 

and failure mode, based on a data-driven approach. Among various methods to evaluate the 

data from each cluster for abnormality, the most effective way is studying the heatmaps created 

by BKDE in Section 3.2.2. To make this evaluation practical, first the center of each cluster is 

found by calculating the arithmetic mean of the nodes in the cluster. This point is then placed 

on the BKDE distributions and is assigned an 𝐴𝑆𝑇 for every combination of variables. These 

values show how the cluster centers are positioned with regards to the correlations of each set 
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of two variables. A threshold denoted by 𝐴𝑇 is defined for a correlation to be considered broken 

in case of 𝐴𝑆𝑇 larger than the threshold value. The result of this method can be visualized in a 

binary board with every correlation, showing whether the correlation is held true or it is broken. 

Such diagram is shown for wine sample data in Figure 3. 13. 

 

   

Figure 3. 13 – Correlations binary boards for wine data clusters 

 In this example, every correlation is held within the boundaries defined by BKDE for every 

cluster. As an illustration of an abnormal case, the hypothetical case of clustering wine data 

into 5 clusters, as shown in Figure 3. 14, produces a cluster with some abnormal correlations.   

 
 

Figure 3. 14 - Clustered SOM map and correlations binary board in the hypothetical case of 5 

clusters for wine data 
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The red lights on the binary board shows the correlation between the variable Mg and three 

other variables to be out of the boundaries defined by the BKDE heatmaps. A biplot relating to 

one of the mentioned correlations is shown in Figure 3. 15. It is visible that the position of the 

single node that is categorized as cluster 5 is an outlier compared to the rest of the GSOM 

nodes.  

 

Figure 3. 15 - Position of GSOM nodes for 5 clusters in wine data. The nodes are shown with 

numbers of their cluster 

Although this result can be assumed as an indication to the abnormality of this cluster, it is 

always recommended to have a subject matter expert decide which cluster are to be considered 

normal operation.  

Supplementary information is possible to provide for aiding the decision-making process. One 

useful method is principal component analysis on the data frame, with color coding the clusters 

in the PCA results as well as the control charts. The PCA is solved for the data frame, and the 

principal components are determined with their corresponding standard deviations. The 

properties of the principal components for the wine test data is shown in Figure 3. 16. 
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Figure 3. 16 - PCA summary for wine data. Variances of principal components and their 

accumulative sum 

In order to determine how many principal components to retain for the calculations related to 

the control charts, a generic suggestion is used in this method, which is to retain the principal 

components with standard deviation value larger than one. Figure 3. 17 shows a total of 3 

principal components that fit this criterion for wine test data, and the biplots of the 

correlations between these principal components with the data points colored with regards to 

their cluster. 
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Figure 3. 17 - Retaining principal components and their biplots for wine data 
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A closer look at the first two principal components shows a clear separation in different 

clusters. This confirms that the different zones of operations as determined by GSOM 

clustering transforms to PCA and is also detectable in the PCA space. However, this is not true 

for more complex datasets, which is usually the case with chemical process data. 

In the next step, 𝑇2 Hotelling and Q-statistic control charts can be developed, since the number 

of retained principal components as well as PCA scores and variations are available. A value 

for threshold of the control charts, denoted by 𝛼 is used to calculate a maximum score 

threshold. The Hotelling’s and Q-statistic control charts is shown in Figure 3. 18. 

 

 

Figure 3. 18 - PCA control charts test results for wine data. Hotelling's T2 and Q-statistics anomaly 

scores with different clusters marked with different colors 
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The anomaly scores are normalized on a logarithmic scale to transforms the control value for 

both of methods to zero, making a comparison possible. Such comparison is made for wine test 

data in Figure 3. 19. 

 

Figure 3. 19 - PCA control charts comparison for wine data 

It is shown in Figure 3. 19 the results of the two tests do not necessarily agree in this case, but 

in a larger scale data, they show more similarity in trends.  

The control charts based on PCA are useful tools in determining the abnormality of the clusters. 

  

3.2.5. Decision making within clusters 

At this point in the analysis, the clusters of the data are categorized into normal operation and 

failure modes, either by user specification or based on the binary board method, as described 

in Section 3.2.2. In this step, the clusters are analyzed individually based on their category.  

First, a category is defined for all the data points that are considered abnormal. Every data point 

that belongs to an abnormal cluster already belongs to this category. On the other hand, there 
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might be some additional data points that have a high distance to the center of an operation 

zone, despite being categorized in a normal operation cluster. In order to find these points, PCA 

control charts are developed for every normal operation cluster individually. These control 

charts are allowed to have different threshold parameters, and the number of principal 

components retained for each cluster may vary with regards to the variation Explained by each 

PC in a particular cluster. The Q-statistic control charts for the first cluster of wine test data is 

shown as an example in Figure 3. 20. 

 

Figure 3. 20 - Q-statistics anomaly scores for wine data cluster 1 

There is one point that needs to be considered while developing the control charts for clusters. 

If a cluster is defined as normal operation, but the number of points inside it is less than the 

number of variables in the data frame, it is not possible to calculate the PCA for said cluster. 

Therefore, this cluster must be recategorized to abnormal altogether. This abnormality is due 

to the scarcity of the data points that are located in positions inside that cluster, as opposed to 

other abnormal clusters, where the abnormality is the result of correlations being broken 

between the variables compared to normal data. In the end, if the user still declares such cluster 

as normal, then more data points should be provided for that operation zone in the training data 

frame.  

The data points of each cluster are compared to their corresponding control charts, and in case 

of anomaly scores higher than the threshold value, these points are added to the abnormal points 

group. This process completes finding the abnormal points all through the data frame.  
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Additionally, the BKDE heatmaps are recalculated, this time including only the normal 

operation data clusters. Figure 3. 21 shows the abnormal points in the training data frame 

marked with color coding based on their cluster for wine test data on top of the corresponding 

BKDE heatmaps in a selected dimension. It is visible that the points that have a considerable 

distance to the center of clusters as well as the outliers in these dimensions are selected by the 

algorithm.  

 

Figure 3. 21 - Anomalies as detected by the fault detection method for wine data. Abnormal points are 

highlighted in the color that signifies their clusters. 

 

A flowchart for the training algorithm is shown in Figure 3. 22 that summarizes the fault 

detection method. The R script for performing the method is included in Appendix. 
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Figure 3. 22 - The fault detection algorithm.  

Standard flowchart symbols and notation (Myler 1998, pp. 32–36) 
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3.2. Monitoring assets using the Fault detection method 

The fault detection method, as described in Section 3.1, can be used as a basis for an online 

monitoring system. The strategy for such monitoring is described in this section. For the 

purpose of monitoring, it is necessary to define a training set of data, from which the first set 

of clusters and control charts parameters is derived. The GSOM grid with node positions, as 

well as clustering information, as well as the BKDE distributions and PCA space data is saved 

as the result of the training. 

In online monitoring based on this method, every new point introduced to the algorithm, is first 

mapped to the already existing GSOM grid, where the point is assigned to one GSOM node, 

also known as the Best Matching Unit (BMU). Since the BMU belongs to one of the clusters 

that are defined in the training, the point subject to monitoring will subsequently be assigned 

to that cluster.  

In the next step, depending on the nature of the cluster that the point is assigned to, different 

strategies will be set to motion for the point. Same as the training phase, if the point belongs to 

a failure cluster, the operator is immediately alarmed about the abnormal state of the process. 

Otherwise, the point is in normal operation cluster, and PCA based control charts should 

determine the state of the process. 

A point that is assigned to a normal cluster should go through the anomaly detection based on 

PCA control charts. The point is first transformed to the PCA space, and then the Hotelling’s 

and Q-statistic scores are calculated for the point. If these scores surpass the thresholds set by 

the operator, this point, although lying in a normal operation zone, is a subject of interest.  

A high anomaly score for a point in a normal operation zone might be an indication of the 

process on the onset of or moving towards a failure mode. Due to the value of predictive 

maintenance and early detection of failures, such point is worth being examine further to find 

out which cluster they are approaching. A way to achieve that is by calculating the distance of 

the point to the center of every cluster. Aside from the cluster they belong to, the closest cluster 

to the point is a good candidate for the state that the process is approaching. If the point is 

approaching another normal cluster, the possibility of a shift between normal operation modes 

is most probable. In contrast, a point that is approaching a failure cluster should alarm the 

operator for the possibility of a failure that is about to happen.  
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A subject of interest for monitoring systems is their ability to distinguish a novel fault, meaning 

a failure or an anomaly that has never happened before. In the failure detection method 

described here, a novel failure is depicted as a new cluster. Therefore, a mechanism is expected 

to be put in place for adding clusters in case of new failures.  

Naturally if a new failure is diagnosed by the operator in any way, a re-training of the method 

should take place with inclusion of the data related to the new failure and adding one to the 

number of clusters. However, supposing a monitoring system based on this method in place, 

there might be no other way to detect a new failure and this system has to offer a strategy for 

such situations.  

A good approach for detecting a novel failure using this method is applied when the state of 

the process is determined to be in anomaly or failure, meaning the point indicating the online 

state of the process is in a failure cluster. In this situation, the distance between the point and 

the center of its cluster can be an indication of the nature of failure. If this distance is too high, 

it is possible that this point belongs to a state different than the failure mode of its cluster, and 

it is assigned to this cluster simply due to the lack of a better option. The threshold for this 

distance is a parameter that should be defined by the operator. 

Rate of re-training is another characteristic of monitoring systems. Aside from the necessary 

re-training in the case of a novel failure, regular re-training with new data measured is 

recommended. An important point to consider for retraining is that since there are a few 

parameters that are chosen at random by the GSOM parameters, the clustering results will differ 

even when repeating the algorithm for the same dataset. This ambiguity of the algorithm can 

be prevented by using reproducible pseudo-random number generation. This way for a process, 

GSOM will always be calculated with the same random numbers.  

A suggestion for the monitoring strategy is suggested in a flow chart in Figure 3. 23. 
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Figure 3. 23 - Monitoring algorithm based on the fault detection method 
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3.3. Evaluation of the Fault detection method 

The criteria for evaluation of diagnostic systems, as developed by Venkatasubramanian et al. 

(2003b) and described in Section 2.2.3 is used to evaluate the fault detection method. This 

evaluation is presented from ten aspects. According to Venkatasubramanian et al. these 

characteristics usually will not be met by any single diagnostic method. However, 

benchmarking methods by a standard set of criteria will provide useful information in terms of 

reliability of solution, generality and efficiency in computation in comparison with other 

methods.  

 

1. Quick detection and diagnosis: Monitoring assets using the fault detection method 

presented in this study is extremely quick in computation. The calculations necessary for 

diagnosing a monitored point takes a fracture of a second, which is more than satisfying for the 

type of assets that the method aims to monitor. 

The downside to such sensitive methods is the possibility of detecting noise in data as failure. 

However, due to incorporation of GSOM in this method noise in one or even a few of the 

measurements will not have a significant effect on the classification results. 

2. Isolability: Being based on self-organizing maps, this method is a classification method in 

its core. The ability of the method to distinguish is highly dependent on the process 

characteristics, as well as the information available on the clusters created by the method. 

However, given proper process parameter definition the method is in theory able to isolate 

every possible failure in different clusters.  

Seeing as the conventional statistical tools used in the industry, such as PCA control charts, 

provide no way of declaring a cause or a classification for a fault, this method can be beneficial 

in this aspect.  

3. Robustness: The robustness of this method can be explained by studying the building blocks 

of the algorithm individually. GSOM as the backbone of the method is its best aspect with 

regards to robustness since it does not include any assumptions on the distribution of the data 

in its algorithm. BKDE also portrays acceptable robustness due to its non-parametric approach. 

On the other hand, PCA is prone to corrupted entries due to its dependence on variation of data, 

making it the weakest link of the method with regards to robustness.  
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4. Novelty identifiability: A strategy is suggested in Section 3.2 for detection of novel faults. 

Although it is not verified to produce results as it is described in this study, this strategy results 

in novelty identifiability for the method, at least in theory. This is only possible due to 

classification power and robustness of GSOM algorithm, whereas more conventional methods 

such as BKDE and PCA are not able to distinguish between different classes of abnormal 

behavior. 

5. Classification error estimate: The method as presented in this study does not include 

calculations regarding classification error estimate. The GSOM classification in the method 

has no probability model underlying, therefore it cannot be used to calculate error estimate. In 

fact, BKDE is the only part of the method that could be used to develop estimates due to its 

probabilistic nature.  

6. Adaptability: The adaptability of this method can be assured by introducing a forgetting 

factor in re-trainings, meaning that by systematically omitting some of the oldest data from the 

training set of data at every iteration of re-training the algorithm will adjust to the changes in 

process properties. This approach is possible for any machine learning based method, therefore 

it does not give this method a significant advantage.  

7. Explanation facility: This characteristic of diagnostic systems is in complete disagreement 

with the model-free data-driven approach that is considered for developing this method. In 

order to provide any explanation on the physical aspect of the process, it is necessary to 

integrate information about the specific process in the algorithm, making the method specific 

for the said process. This is against goal that was in mind when developing the method. This 

method is designed to point the user in the right direction in trying to explain the origin of the 

fault themselves. 

8. Modelling requirement: This method has been developed completely data-driven, with no 

dependence on physical models or any information about the process it will describe, making 

the modelling requirements minimal for training and deployments.  

9. Storage and computational requirements: Significant progress in computer technology 

has made storage and computing power easily available. A typical personal computer has the 

capacity to carry out the calculations of this method, same as most of conventional fault 

detection and diagnosis methods.    

10. Multiple fault identifiability: It is possible that a multiple fault process state lies in a 

distinctive position in the multidimensional space that is happened to be picked up by GSOM 
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as a distinctive cluster, different form every individual fault cluster. Aside from this unlikely 

occurrence, this method classifies every point in one and only one cluster, therefore the method 

in and of itself is not able to distinguish multiple faults.  

This characteristic is not to be considered a major disadvantage of this method, since this 

problem often proves to be extremely complex due to interactions between different faults.   
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4. Case Study 

 

In order to illustrate the performance of the proposed method in more detail, it is applied on 

real process data from a Polyurethane (PU) production plant. The data is provided by Huntsman 

corporation, a global manufacturer and marketer of differentiated chemicals. 

The process that is the subject of this study is Hydrogen chloride compression, which is a side 

step in the process line of PU. The compression is handled using reciprocal compressors, 

making them the target asset for fault detection and monitoring. The chemical process of PU 

production, as well as physical description of reciprocal compressors is presented in the next 

sections, followed by the results of applying the method on the data from such process. 

 

4.1. Process Description 

Polyurethanes process is an important asset within Huntsman Corporation. Huntsman 

Polyurethanes is a global leader in MDI-based polyurethanes. There are Huntsman production 

facilities in the US, the Netherlands and China.  

Diphenylmethane diisocyanate (MDI), as the principal raw material for production of PU is 

produced in two plants at the Rozenburg site, located near Rotterdam, the Netherlands. These 

plants blend and react MDI and polyols with various additives to produce materials for specific 

applications, mainly PU production. The resulting PU foams are optimized for industries 

ranging from automotive industries to consumer products such as sports footwear. 

 

4.1.1. Chemical Process 

Polyurethane (PU) is a polymer composed of organic units joined by carbamate (urethane) 

links. It is in the form of extremely lightweight rigid or flexible cellular foam matrix with 

superior insulating properties. By definition, all of PU materials have at least one urethane 

group (-NH-CO-O-) in their structure, as shown in Figure 4. 1.  
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Figure 4. 1 - Polyurethane group (Sonnenschein 2015) 

The main areas of use for polyurethanes according to Boustead (2005) are: 

1. The furniture and mattress 

2. The automotive industry 

3. the consumer sectors 

4. The construction industry  

5. Refrigeration engineering 

The biggest areas of use for Rigid PU products are the latter two. These products are widely 

used for conserving energy in housing and commercial properties, and food supply chain; 

keeping products at the right temperature in refrigerated vehicles, chiller cabinets and 

refrigerators.  

Seeing as about half the energy used in the life of a building is for heating and cooling, effective 

insulation is a major priority. Compared to other building materials, polyurethane insulation 

has the highest thermal resistance (R-values) at a given thickness and lowest thermal 

conductivity. Use of such material helps meet advanced energy codes, contributes toward green 

building certifications and provides comfort to the building occupants; Therefore, addressing 

some of the emerging global megatrends. 

The main building blocks of PU materials are polyols and isocyanates. Polyols are defined as 

the polymer backbones containing nominally two or more hydroxyl groups (OH). The polyols 

content of the PU is responsible for flexibility and softness of the material, whereas the 

diisocyanates are responsible for stiffness of resulting PU (Sonnenschein 2015).  

The presence of N = C = O triad determines a chemical as Isocyanate.  The electrophilic 

carbon and the relatively nucleophilic nitrogen of this group results in a chemical suitable for 
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addition of active hydrogen molecules, which is a property desired in production of PU 

(Raspoet, Nguyen 1998). 

Isocyanates are characterized by high reactivity and versatility. This has led to the wide variety 

of applications that polyurethane materials have in chemical industry (Delebecq et al. 2013). 

There are two primary Isocyanates used in PU production: toluene diisocyanate (TDI), used 

for producing flexible PU, and methylenediphenyl diisocyanate (MDI), used in rigid PU and 

insulation foams (Sonnenschein 2015).  

MDI, with chemical formula (OCN.C6H4.CH2. C6H4.NCO) as visualized in Figure 4. 2, is the 

most common Isocyanate used in production of PU. The largest volume uses for MDI are rigid 

foams, adhesives, sealants, coatings, elastomers, and flexible polyurethane foam. 

 

 

Figure 4. 2 - Molecular structure and 3D ball-and-stick model of MDI molecule 

During the industrial process of MDI production as shown in the Figure 4. 3, 1 kg of MDI is 

produced from 0.8 kg of aniline and 0.9 kg of phosgene producing 0.6 kg of waste HCl 

(Sonnenschein 2015).  

Hydrochloric acid as a byproduct of the MDI process, is also used as a catalyst in the formalin 

aniline process. The HCl omitted from the reaction, with the carbon monoxide taken off at the 

top of the reaction column. This composition needs to be treated to the desired condition for re 

using in the process. The treatment is mainly compression of the gas to the pressure high 

enough for use as catalyst, and to pipe the excess amount out of the process line. 
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Figure 4. 3 - MDI production process flow (Sonnenschein 2015) 

 

4.1.2. Reciprocating compressors 

Compressors are mechanical devices that have the purpose of increasing the differential 

pressure of a gases. (Bloch, Hoefner 1996). 

Industrial compressors are categorized in two main groups: Positive displacement compressors 

and dynamic compressors. Positive displacement compressors function based on confining the 

gas in a closed space, and then increase the pressure by reducing the volume of the said space. 

The compressed gas is then discharged through pipes out of the working space. On the other 

hand, dynamic compressors function based on increasing the velocity of the gas, and then 

converting the gained energy from momentum into pressure (Bloch 2006). 

Positive displacement compressors have a wide variety of configurations and geometries, 

among which piston equipped reciprocating compressors and helical screw rotating 

compressors are by far the most commonly used in the industry.  
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Figure 4. 4 - Classification of compressors (Bloch, Hoefner 1996) 

Reciprocating compressors are the most common type of gas compressors. This is due to high 

pressure ratio that these compressors are able to produce at low mass flow rate, as well as the 

cost efficiency.  

A reciprocating compressor setup comprises a cylinder-piston system with spring loaded inlet 

and exhaust valve, discharging into a receiver, where the gas with high pressure is stored. A 

typical setup can be viewed in Figure 4. 5. 

 

Figure 4. 5 - Reciprocating compressor set-up (Bloch, Hoefner 1996) 
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The furthest position of the piston crown from the valves and the closest it gets to them, are 

called Bottom Dead Center (BDC) and Top Dead Center (TDC), respectively. In practice, there 

is always a clearance between TDC and the cylinder top. This volume of gas is never delivered, 

and expands during the piston reverse stroke. Therefore, the volume of gas entering the cylinder 

during induction is always less than the swept volume by the compressor. 

Reciprocating compressors follow a four-stage thermodynamic cycle, as the p-V diagram 

shows in Figure 4. 6.  

 

Figure 4. 6 - pV diagram for reciprocating compressor cycle (Bloch 2006) 

These stages are as follows: 

1- Compression (1→2): Starting at point 1 in Figure 4. 6, the cylinder is full of gas and 

ready to compress, and at this stage both valves are closed. The stroke of piston 

compresses the gas to the high-pressure state. Both valves stay closed. 

2-  Delivery (2→3): This is the stage where the gas pressure has reached that of the 

receiver. At this point, the discharge valve opens, letting the gas exit the cylinder while 

the piston completes its stroke. At the end of this stage, only the gas trapped in the 

clearance volume is left in the cylinder. 

3- Expansion (3→4): The third stage marks the completion of the piston stroke. The 

discharge valve closes, and the piston moving back will increase the volume of the now 

trapped leftover gas (Expansion). As a result, the pressure decreases to the intake 

pressure value. 

4- Induction (4→1): As soon as the pressure inside reaches the intake pressure, the inlet 

valve opens, letting gas inside the cylinder until the end of pistons reverse stroke 

(Induction), completing the cycle. 
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Any setup for a single reciprocal compressor comes with certain limitations, including pressure 

ratio, discharge temperature, power consumption, and effect of clearance volume (Bloch 2006). 

Based on these limitations, and in order to reach higher pressure ratios with minimized power 

consumption, it is common use a multiple stage compression setup.  

A multiple stage compression setup consists of a number of compressors (usually between two 

and four) that are serially connected, with a separate cylinder for each stage and intercooling 

of the gas in between stages. The pistons usually move with the same speed, and are connected 

to a single rotating apparatus. Each of these can be studied as a single compressor, with the 

inlet properties equal to the outlet of the intercooler stage before it. A p-V diagram of the 

combined stages of a two-stage compressor can be seen in Figure 4. 7. 

 

Figure 4. 7 - pV diagram for multistage reciprocating compression (Bloch 2006) 

It is desirable to cool the gas after any stage to the same temperature as it was before that stage 

of compression, therefore minimizing the work required for the next stage. 

There is an ideal relation between the pressure ratios of each stage to minimize the power 

required for the whole setup, in a case where the cooling is exactly to the isothermal point. In 

this approach, the total compression ratio is distributed to the stages in a way that the pressure 

ratio of every stage is equal. 
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4.1.3. Huntsman set-up 

The MDI required to for PU process is produced by reacting phosgene with di-amino di-phenyl 

methane (DADPM). These two building blocks are produced in the following reactions 

2𝐶6𝐻5𝑁𝐻2 + 𝐶𝐻2𝑂
𝐻𝐶𝑙
→  𝑁𝐻2. 𝐶6𝐻4. 𝐶𝐻2. 𝐶6𝐻4. 𝑁𝐻2⏟                  

𝐷𝐴𝐷𝑃𝑀

+ 𝐻2𝑂                                                   (4.1) 

𝐶𝑂 + 𝐶𝑙2
𝐶
→ 𝐶𝑂𝐶𝑙2⏟  
𝑝ℎ𝑜𝑠𝑔𝑒𝑛𝑒

+ 𝐻𝑒𝑎𝑡                                                                                                           (4.2) 

DADPM and phosgene are then reacted inside a phosgenation chamber with 

monochlorobenzene (MCB) as solvent 

𝐷𝐴𝐷𝑃𝑀 + 2𝐶𝑂𝐶𝑙2
50°−110℃
→       𝑁𝐶𝑂. 𝐶6𝐻4. 𝐶𝐻2. 𝐶6𝐻4. 𝑁𝐶𝑂⏟                  +

𝑀𝐷𝐼

4𝐻𝐶𝑙                                   (4.3) 

The product of this reaction containing MDI, MCB, and HCl has to be distilled for the MDI to 

be usable in PU production. Through a series of columns, the different by-products of the 

process are separated from MDI. HCl with the excess carbon monoxide is taken off at the top 

of a phosgene absorption column, and then sent to compressors to increase pressure. The set-

up contains 5 parallel reciprocating compressors, each with three stages. 

 

4.2. Results of analysis based on the fault detection method 

In this section, the results of the method developed in the earlier chapter is studied on the 

compressor sensor data from the MDI production line from Huntsman plant.  

The data frame that is the subject of this study contains 48 measurements throughout the 5-

compressor setup, that is recorded with the intervals of one measurement every ten minutes 

over the course of 15 months.  

The measurements include the input and output pressure of the whole setup, as well as input 

and output temperature and inter-stage temperature values for individual compressors. There 

are additional values describing the cooling systems of compressors, and finally, measurements 

in the electric rotary parts of the compressors, which are used to verify the state of the 

compressors the check whether they are operational. A measurement of the MDI production 

rate indicates the operation of the whole plant. MDI has positive values, and for very small 

values of it the plant is considered shut down.  
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Additional to the measurement information, some supplementary information regarding some 

periods of time is provided by Huntsman. That includes some instances of unplanned shut 

downs in compressors, which indicates a failure, as well as some periods of time that due to 

changes in process parameters, there are fluctuations in the measurements. These information 

as well as periods leading to a switch between the operation of two compressors are represented 

as color codes in the first part of the analysis. 

 

4.2.1. Pre-processing 

In the beginning, it is necessary for the whole data frame altogether to go through an analysis 

in order to reveal the multi-regimen nature of it. The MDI rate measurements enables the 

filtering out of the data for when the plant is down. It is important to filter out the data for these 

periods of time, because individual compressor sensors are recording measurements while the 

plant is down, and these values should not be included in the analysis, as they bear no physical 

relevance.  

An important step in pre-processing of the data is scaling. In this step, every variable goes 

through normalization and standardization process individually, meaning that the arithmetic 

mean of all of data points in each variable is subtracted from each values observation, and then 

these values are divided by the value of standard deviation of all the data for each variable. The 

result is a data frame where every variable has a zero mean and standard deviation equal to 

one. The result of this process is making every variable dimensionless. Any real process data 

frame has data with different measurements of different properties, therefore the data is of 

different units. For example, the data from compressor has temperature measurements, pressure 

measurements, and other variables that have different units. These units and their ranges are 

not subjects of interest in data driven analysis, so by scaling the data the only characteristic of 

the data remaining is the gradients between different instances of measurements. 

After filtering out the plant down times, a PCA is solved for the whole data frame to visualize 

the distribution of the data. The results for the standard deviation of the principal components 

show a high variance in different dimensions of the data. As seen in Figure 4. 8, the first 10 

components have a standard deviation greater than 1, with 6 of them larger than 2. These results 

prove PCA to be incompetent in discovering sufficient knowledge from this data frame. A 

biplot of the first two principal components is shown in Figure 4. 8. This figure illustrates the 

complexity of the data and the multi-regimen nature of it.  
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Figure 4. 8 – PCA on Huntsman data for all compressors 

In order to elaborate on the nature of the data better, 5 periods of time that are considered 

normal operation for the plant are selected and combined to form a new data frame. This data 

frame contains some periods of time that indicate the plant working within the boundaries of 

normal operation. PCA on this data shows the different zones that a normal operation for this 

data can have, as seen in Figure 4. 9. 
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Figure 4. 9 - Different periods of normal operation of Huntsman data in PCA space 

Such significant differences in instances of normal operation can be traced to the different 

combinations of compressors that might be operating in different periods of time. Since there 

are 5 compressors, of which 4 are usually operational, a switch in the compressors can shift the 

operation zone drastically. Therefore, it is reasonable to separate the data relating to each 

compressor and analyze them individually.  

The grouping of data for each compressor includes some common measurements, such as input 

and output pressure and MDI rate, as well as individual measurements such as inter-stage 

temperatures and fluid flows into the cooling systems. A measurement relating to the electric 

current of the motor verifies the operation of the compressor. The periods of time where this 

measurement indicates the compressor to be shut down is filtered out of the data, based on the 

same reasons mentioned for the filtering of MDI rate low values.  

The results of the analysis for one of the compressors is shown in this section. The same 

analysis is applicable for every compressor in the set-up. Figure 4. 10 shows the correlogram 
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for the sample compressor. The figure shows high correlation between the temperature 

measurements, denoted by T in their tag, and less correlation between the rest of the 

measurements. This is explained by the physical relation between the inter-stage temperatures 

of the flow, and the natural correlation between these values.  

 

Figure 4. 10 - Correlogram for Huntsman single compressor data. Color blue denoted positive 

correlation and red denotes negative correlation. The intensity of the colors is an indication of the 

value, with higher values of correlation having more intense colors. 

  

4.2.2. Kernel Density Estimate 

Following the algorithm described in Section 3.1, the first step in analyzing the data is 

calculation of the BKDE distributions. The values for probability distribution of points in every 

combination of measurements are stored for later comparison. Plots such as Figure 4. 1 can be 

produced to illustrate the BKDE distributions. The contours are drawn based on the calculation 

of the 𝑓 within a 256 × 256 grid that contains all the data points, as described in detail in 

Section 2.3.2.   
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Figure 4. 11 - BKDE contours based on anomaly score for Huntsman single compressor data 

The advantage of such estimation, is that there is no assumption taken into consideration for 

the distribution of data and the method is completely insensitive to the distribution of data. This 

is contrasting the more usual methods such as PCA, where the accuracy of the method is reliant 

on the distribution of data. A data with closer to multivariate gaussian distribution will produce 

more reliable results in PCA. The data points distribution in the PCA space for the first two 

principal components is shown in Figure 4. 12. 

It can be seen in Figure 4. 12 that although most of the data, in fact more than 95% is populated 

around the center in the PCA space, there are extreme outliers that have high distances to the 

rest of the points. Additionally, it can be observed that the first two principal components only 

explain about 53% of the variation in the original data, which is not sufficient for in-depth 

analysis.  
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Figure 4. 12 - Huntsman single compressor data in PCA space 

 

4.2.3. Growing self-organizing map and clustering 

The next step of the method is mapping the points in GSOM, following Section 3.2.3. The 

spread factor is set at 0.9, which results in 160 nodes for this data frame. The training plot for 

this mapping is shown in Figure 4. 13.   

The figure shows that the growing phase, where new nodes are generated, continues for 11 

iterations of the algorithm. The rest of the process up to 50 iterations is the smoothing phase, 

where no new nodes are generated, and the algorithm is calculated the same as the original 

SOM. 
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Figure 4. 13 - GSOM training progress for Huntsman single compressor data 

A parallel mapping using SOM is calculated with the number of the nodes set to be equal to 

the result of the GSOM. Since the GSOM resulted in 160 nodes, a grid of 16 × 10 is defined 

for the SOM analysis. The training plot for the SOM is shown in Figure 4. 14.   

 

Figure 4. 14 - SOM training progress for Huntsman single compressor data 
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By observing the two training plots, it is possible to verify that the GSOM algorithm reaches a 

value of mean distance to unit around 0.001 after less than 50 iterations, which is achieved by 

the SOM algorithm in around 90 iterations. Therefore, one of the advantages of GSOM over 

SOM, the speed of convergence, is confirmed.  

Another important diagram for the mappings is the count plot, where the arrangements of nodes 

in an organized map as well as the number of data points allocated to each node is illustrated. 

This plot for SOM is shown in Figure 4. 15. 

 

 

Figure 4. 15 - Mapping of Huntsman single compressor data in SOM 

 

Figure 4. 16 shows the arrangements and the counts of points for the GSOM with same number 

of nodes. In comparison with SOM, the lack of order in the position of nodes can be noticed. 

It is noteworthy that these arrangements are arbitrary, resulting from some of the analysis 

parameters that are chosen at random in GSOM algorithm; therefore, repeating the analysis on 

the same data frame, will result in different outputs in terms of node arrangements and even 

the number of nodes. 
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Figure 4. 16 - Mapping of Huntsman single compressor data in GSOM 

An example of the repeated test for the same data frame is shown in Figure 4. 17. This mapping 

results to 167 nodes, and the different arrangement of nodes in comparison with the first 

mapping is clearly visible. From this observation it can be surmised that the original SOM has 

better reproducibility compared to GSOM. However, this difference in the arrangement of 

nodes in the GSOM grid does not cause a major difference in the position of nodes in the 

multivariate space of input data, therefore the reliability of the method is not challenged by 

these differences.  

 

Figure 4. 17 - Mapping results for retraining of Huntsman single compressor data in GSOM 
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Another comparison between SOM and GSOM can be drawn from the accuracy of the node 

positioning with regards to the data points density in input space. In order to illustrate in two 

dimensions, the position of SOM and GSOM nodes are studied in combinations of two 

measurements in biplots. Figure 4. 18 is an example of these plots. 

Although the results of SOM and GSOM as seen in Figure 4. 18 agree for the most part, one 

major short-coming of the original SOM in comparison to GSOM is visible in this figure. The 

region between the two big clusters of points is left out by GSOM nodes, as there are no data 

points in this region. In contrast, due to high density of points above and below this region, a 

number of nodes are placed in areas with no real data points around by SOM. This inaccuracy, 

mentioned by many studies about SOM, is verified by observing the positioning of the nodes 

in Figure 4. 18.  

 

 

Figure 4. 18 - Comparison in node positions between SOM in GSOM for Huntsman single 

compressor data 
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The next step according to the algorithm is clustering the GSOM nodes and subsequently the 

data points. Although it is recommended to consult the subject matter expert on the number of 

clusters, a generic method for selecting the number of clusters is here presented. This method, 

as mentioned in the algorithm is based on K-means clustering. A parameter called within 

cluster sum of squares is calculated for every potential case of clustering based on K-means 

method. These values are shown in  Figure 4. 19. 

It can be observed in Figure 4. 19 that the trend of decrease in the value of WCSS shows 

changes in 3, 6, and 8 for the number of clusters. Naturally, the largest number is selected for 

clustering the data, since it could possibly be able to reveal more information on the operation 

zones than the other cases. 

 

Figure 4. 19 - Estimation on the optimal number of clusters for Huntsman single compressor data 

 

The hierarchical clustering is made as described in the algorithm. The nodes of GSOM are 

grouped into 8 clusters based on their distance. The data points follow the node that was 

determined for them as the best matching unit (BMU), and are be allocated to a cluster of their 
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BMU. In order to visualize the clustering result, the same procedure is done for SOM results. 

Due to the order in the SOM two-dimensional grid, the clustered nodes will form regions with 

clear borders. The clustered SOM grid is shown in Figure 4. 20.  

It can be seen in Figure 4. 20 that some clusters, such as clusters 4, 7, and 8 only have one node 

in SOM belonging to them. It should be notes that this is not an indication to the number of 

actual data points that belong to these clusters. By comparing Figure 4. 20 with Figure 4. 15, 

where at least 500 points can be seen to belong to the one node that comprises cluster 7.  

 

Figure 4. 20 - Clustering of SOM for Huntsman single compressor data 

The colors assigned to each cluster is illustrated in Figure 4. 21. 

 

Figure 4. 21 - Colors and cluster numbers relation 

The GSOM clustering will also have nodes categorized in 8 clusters, an although a visual 

representation of the clustering such as Figure 4. 20 is not possible for GSOM, this clustering 
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will be the basis of the algorithm. This is due to the advantages of GSOM as described earlier. 

The GSOM clustering is visualized through the color categorization of a dendrogram which is 

the result of hierarchical clustering of the distance matrix from the GSOM nodes, as shown in 

Figure 4. 22. In this figure each number belongs to a GSOM node, and the colors determine 

the cluster that the node belongs to with regards to Figure 4. 21. 

 

Figure 4. 22 - Hierarchical clustering dendrogram of Huntsman single compressor GSOM 

 

4.2.4. Categorization of the clusters 

The next step is to determine the nature of each cluster as either normal operation or failure 

mode. In order to do so, the correlation binary boards are developed based on BKDE as 
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described in the Section 3.2.4. For Every cluster, every combination of two measurement 

possible is studied, where the center of the cluster is assigned an anomaly score based on its 

probability in the BKDE distribution. The anomaly threshold as described in the algorithm is 

set at 3, and the results for every cluster of the data is shown in Figure 4. 23. 

   

   

  

 

Figure 4. 23 - Cluster control binary boards based on BKDE for Huntsman single compressor data 
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Although at this point it is again advisable to consult the subject matter expert to decide for 

each cluster, a more generic approach is described here to categorize the clusters. 

Based on observation, it can be deduced that clusters 1 and 2 are normal operation, because 

there are almost no correlations that have higher anomalies than the threshold. On the contrary, 

clusters number 4, 6 ,7, and 8 are to be considered failure models, since most of the correlations 

in these clusters have significantly high values of anomaly score.  

The two remaining clusters, 3 and 5, demonstrate one measurement that has high anomaly in 

correlation with almost every other measurement. The reason for these anomalies can be traced 

in measurement instruments. Since these measurements are so highly correlated, it is possible 

that if the correlation of one variable is abnormal with every other measurement, the said 

variable is not being measured correctly. Normally in a systematic failure, sudden changes in 

one variable will lead to changes in some of the variables that are closely related to it.  

In cluster 5, the variable that has high anomaly in its correlations is an inter-stage temperature 

measurement. This value is highly correlated with the other inter-stage temperature values of 

the same compressor, therefore sudden changes in this value should result in changes in the 

other inter-stage temperature values. In this case, there is no anomaly observed for the other 

temperature measurements observed, which means that cluster 5 is most probably the result of 

a measurement error for the said temperature.  

On the other hand, cluster 3 shows an anomaly in correlations between every measurement and 

the input pressure measurement, which is a variable shared by all the compressors in the set-

up. This measurement is not an internal property of the compressor; therefore, it is not 

physically expected to have any specific correlation with the other measurements in this data 

frame. This can be confirmed by studying the correlations of this measurement with the other 

variables in Figure 4. 10. Therefore, the measurement error assumption for cluster 3 is 

considered invalid, as it will be confirmed in the following section.  

In any case, clusters 3 and 5 are also considered a failure mode. It should be mentioned again 

that judging the clusters as normal and failure depends on many different factors, and this 

method is merely a general guideline. In practice, the data scientist usually does not have to 

decide on the normal operation zones of a process. However, visualizations with real values of 

variables can be helpful in decision making process for clusters. Some examples are shown in 

the following for plots that are helpful for each cluster.  
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The biplots that will give useful information with regards to nature of the clusters are found by 

observing all the possible combination of measurements. It is important to note that the 

separation between every cluster is not visible in every dimension, since some of the clusters 

will have the same values in some of variables. These plots are specifically chosen out of every 

possible combination of measurements to highlight the separation of clusters.  

For these figures, all the values are descaled for better visualization, meaning that the values 

are returned to their original values with the original units of measurement. In these plots, 

cluster 1 and 2 can be seen as good candidates for normal operation zones, due their density 

compared to the other areas in the plot.  

Figure 4. 24 shows a dimension that highlights the distance between clusters 3 and 4 and the 

rest of the clusters. Both measurements are pressures, so it can be deduced that clusters 3 and 

4 signify pressure drops at two different points in the process. As it can be seen data points 

around nodes of cluster 3 are scattered around space in a physically sensible manner with 

reasonably variant values, which confirms the cluster to be a physical anomaly and not a 

measurement error.  

 

Figure 4. 24 - Position of GSOM nodes and clusters with regards to data points to signify separation 

of clusters 3 and 4 
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Figure 4. 25 shows clusters 5 and 8 in their most distant from the rest of data points. Both 

clusters are related to anomalies in one measurement of an inter-stage temperature. However, 

there is a major difference between these two clusters that can be studied observing the BKDE 

correlation charts. Almost every correlation in cluster 8 has high anomaly, making is an 

extremely abnormal cluster. On the other hand, for cluster 5 the mentioned temperature is the 

only measurement that shows highly abnormal correlations with almost every other 

measurement. On this account and the fact that this temperature is for almost every point in 

cluster 5 measured at the exact same value, which is much higher than every other measurement 

and physically not sensible, it can be deduced that cluster 5 is in fact caused by a measurement 

error.  

 

Figure 4. 25 - Position of GSOM nodes and clusters with regards to data points to signify separation 

of clusters 5 and 8 

 

Anomalies of clusters 6 and 7 are highlighted in Figure 4. 26. Cluster 6 is shown to have higher 

values in a measurement of inter-stage temperature, and cluster 7 is due to plant running at 

slightly lower capacity, resulting in lower MDI level. It is also worth noting that clusters 4 and 

8 are also observed as outliers in this dimension. This is an expected result, since most of the 

correlations for these clusters possess high values of anomaly. Nodes of such clusters are 
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expected to lie at a distance with the normal operation zones in many of the biplots of two 

chosen variables.  

 

Figure 4. 26 - Position of GSOM nodes and clusters with regards to data points to signify separation 

of clusters 6 and 7 

 

At this point in the analysis, a monitoring system can already be developed. This system should 

track the data points in real time and alert the operator whenever the process is operating in a 

failure mode cluster. However, in order to comprise a monitoring system that has abilities to 

possibly predict such faults, this method is combined with conventional process data analysis 

methods based on PCA. 

First, it is useful to study the data frame all together in the PCA space and develop the control 

charts for the process for all the data as one entity with taking the clustering into consideration. 

Figure shows a biplot of the data for the first two principal components, with the colors 

signifying the clustering of the points. 

It is confirmed in Figure 4. 27 dense area of points around the center is in fact the normal 

clusters determined by the method, whereas the clusters considered abnormal by the method 
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are lying mostly far from the center of PCA space. However, some of the abnormal clusters, 

have blended with normal clusters in this view of the PCA space. 

 

Figure 4. 27 - Clustered Huntsman single compressor data in PCA space with the first two 

components 

 

  

Further observation shows that the abnormal clusters that are not visibly separate in the first 

two principal components view, are possible to detect in other less significant principal 

components. As an example, Cluster 3 is completely masked by the normal operation clusters 

when viewed in the first two principal components in Figure 4. 27, but the same cluster lies 

with a clear separation from normal data when viewed from the fourth principal components 
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perspective in Figure 4. 28. Same argument can be made for cluster 5, which is revealed when 

observing the third principal component. 

 

Figure 4. 28 - Clustered Huntsman single compressor data in PCA space with the third and the 

fourth components 

 

The PCA control charts can also be developed to study the abnormality of clusters when the 

parameters of the tests are derived from all of data. The number of principal components 

retained for calculating the parameters of these tests is selected as 4, based on the standard 

deviation of the components, shown in Figure 4. 29. As divided in this figure, components that 

have standard deviation values larger than one are retained in for developing the control charts.  
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Figure 4. 29 - Decision making on the number of retaining principal components for Huntsman single 

compressor data 

 

The results of Hotelling’s 𝑇2 and Q-statistic tests are shown in Figure 4. 30. It shows the 

anomaly scores for data points. Here it can be confirmed that the points that belong to clusters 

4 and 8 have extremely high anomaly scores in both tests, and points belonging to normal 

clusters mostly have anomaly scores within the threshold defined by both tests. This figure 

clearly illustrates the limitation of PCA control charts. Clusters such as 3 and 5 do not score 

very high in these tests, although it is shown in Figure 4. 24 and Figure 4. 25 that the points 

belonging to these are extreme outliers.  

Additionally, the anomalies determined by PCA control charts are not distinguished based on 

the state of the process, whereas in GSOM clustering these anomalies are categorized in 

different clusters. This information is essential for more in-depth analysis in diagnosing the 

nature, causes, and outcomes of these faults. 
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Figure 4. 30 - PCA control charts test results for Huntsman single compressor data. Hotelling's T2 

and Q-statistics anomaly scores with different clusters marked with different colors 

 

In order to study the agreement between the two tests, the anomaly scores based on these tests 

are normalized to a logarithmic scale in a way that the threshold for both tests is transformed 

to zero, as described in the description of the method in Section 3.2.4. These results are plotted 

in Figure 4. 31. 
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It can be seen in Figure 4. 31 that although the two tests have some differences in scoring some 

points with lower anomaly scores, they match in the spikes, which are the points with high 

anomaly score.  

 

 

Figure 4. 31 - Normalized PCA control charts anomaly scores for Huntsman single compressor data 

 

4.2.5. Decision making within clusters 

The next step according to the method is to develop individual control charts based on PCA 

for every normal operation cluster. Since The major anomalies are already categorized in the 

failure clusters, this method will attempt to detect the points inside the normal operation zones 

that show suboptimal behavior. These points are vital for monitoring purposes, since they are 

good candidates for the onset of or a move towards a failure.  

The Q-statistics control charts for the two normal clusters of the data is shown in Figure 4. 32. 

Similar plots based on Hotelling’s test can also be used, since the two methods were shown to 

be practically interchangeable.  
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Figure 4. 32 - Q-statistics anomaly scores for individual normal clusters of Huntsman single 

compressor data 

Points that have an anomaly score higher than the Q-statistics threshold, are detected as 

suboptimal points. The distance between these points and the center other clusters can give 

important results on the state of the process while monitoring.  

A point with high anomaly score in its cluster has is at a distance with the center of the cluster. 

Taking the physical implication of this point into account, detecting such point in real time 

means that the process state might be leaving the normal operation zone. If at this period of 

time, data points generated are approaching the other normal operation zone, it could be 

interpreted as a shift between normal operation zones. However, if the points are approaching 

a failure the operator should be notified. A conjecture is also possible to make on what kind of 

failure is expected to happen based on the cluster that the points are approaching.  



91 

 

Another useful visualization that can be extracted from this method is to form heat maps based 

on BKDE distributions for the normal operation zones of the process. Such Maps are composed 

by drawing contours based on BKDE probability calculated only from the data in the normal 

operation zones. These maps such as Figure 4. 33 are collected and make up a reference to the 

normal operation of the process in a certain period of time.  

 

Figure 4. 33 - BKDE based heatmap of normal operation for Huntsman single compressor data 

 

As a verification of the diagnosis based on the fault detection method, the points that are 

considered noteworthy are marked with an accent color in plots of different measurements 

against each other. The noteworthy points consist of every point belonging to an abnormal 

cluster, as well as the points in normal clusters that are considered suboptimal based on the 

PCA space control charts. Every point is colored according to its GSOM cluster. Additionally, 

some other points related to known history process are highlighted. These points show the 

period of time leading to a known failure, as stated by Huntsman process experts. These points 

are marked by ‘+’ in Figure 4. 34. As it can be seen, many of the points that are specified as 

leading to a failure, match the accented points based on the fault detection method. 
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Figure 4. 34 - Comparison between anomalies detected by the method and periods of time leading to 

failures. Colored points are abnormal points marked by the method, and ‘+’ marks periods leading to 

failures 

 

A more detailed view of two of these instances is shown below. Figure 4. 35 show a more 

focused look at the areas of Figure 4. 34. It can be seen that the points determined by the 

algorithm match exactly the points that are marked as a time period leading to a known failure. 

Interestingly, both groups belong to a normal cluster, but they are marked due to their high 

anomaly score in the inside cluster PCA control charts test. 
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Figure 4. 35 - magnified areas of matching anomaly points inside normal clusters with periods 

leading to failures 

This verifies the importance of monitoring normal operation points for early failure detection. 

Additionally, it is worth noting that these points are not considered abnormal in PCA control 

charts developed over all of data, shown in Figure 4. 30. 
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5. Summary 

 

Big data analytics have gained increasing attention recently due to the advancements in 

computer technology providing enough computing power for analyzing big datasets. In 

chemical industry, this attention is focused on a select small group of critical assets that are 

financially sensitive or are important due to safety reasons. Most of the effort is spent on 

monitoring these assets, using high-tech devices and model-based approaches to analyze and 

diagnose these assets. However, less central assets in a process can have as strong effect in 

improving the process and therefore the profitability of the plant. 

This study is dedicated to development of a novel data-driven method in asset fault detection, 

that is applicable to a wide range of assets. The method is designed to analyze data with no 

modelling requirements, no assumption on the distribution of data, and no need for pre-defined 

operation zones or time periods. Additionally, the method is intended to be used by chemical 

process experts, therefore it requires minimum tuning and parameter definition. The process 

expert is encouraged to get involved in decision making for the number and nature of clusters 

based on knowledge on the physical properties of the system as well as the process history.   

The method maps multivariate data in a GSOM, and categorizes the data into hypothetical 

normal operation zones and failure zones using hierarchical clustering. The nature of clusters 

is estimated by utilizing BKDE distributions and study the anomalies in the correlations 

between the measurements in every cluster. Observations on BKDE distributions as well as the 

process expert’s opinion validates the clustering and separates the normal operation zone from 

failure zones. In the end, the normal operation zoned are transformed to PCA space for analysis 

and calculation of anomaly scores based on Hotelling’s T2 and Q-statistics methods. A 

guideline for monitoring based on the method is also described in detail.  

The method is applied on real process data from a reciprocating compressor, operating at 

Huntsman chemicals company. The results of analysis for this dataset shows superior results 

to conventional methods. Decision making for clusters is confirmed by observing plots of real 

data and the position of GSOM nodes and clusters. Additionally, comparison between 

abnormal points detected by the method in normal operation zones and points that are known 

to be leading to a failure from process history shows detection of some of these periods. The 

method is also evaluated and compared to other methods based on a set of criteria that is defined 

for evaluation of diagnostic systems.  
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