
Technische Universität Dortmund
Fakultät Maschinenbau

IT in Produktion und Logistik

Master’s Thesis

Integrated Hierarchical Forecasting with Mixed Distributed
Demand Patterns on Large Data Sets

Lukas Rost
188032

Supervisors Technical University Dortmund:
Coach: Prof. Dr.-Ing. Markus Rabe
Coach: Dipl.-Inf. Anne Antonia Scheidler

Supervisor Erasmus University Rotterdam:
Coach: Prof. Dr. Jan van Dalen

Supervisors Company:
Coach: Robert Simpson
Coach: Anna Eschweiler

Date: March 8, 2018



Eidesstattliche Versicherung 
(Affidavit) 

 
 
   
Name, Vorname 
(Last name, first name) 

 Matrikelnr. 
(Enrollment number) 

 
Ich versichere hiermit an Eides statt, dass ich die 
vorliegende Bachelorarbeit/Masterarbeit* mit dem 
folgenden Titel selbstständig und ohne unzulässige 
fremde Hilfe erbracht habe. Ich habe keine anderen 
als die angegebenen Quellen und Hilfsmittel benutzt 
sowie wörtliche und sinngemäße Zitate kenntlich 
gemacht. Die Arbeit hat in gleicher oder ähnlicher 
Form noch keiner Prüfungsbehörde vorgelegen. 

 I declare in lieu of oath that I have completed the 
present Bachelor’s/Master’s* thesis with the following 
title independently and without any unauthorized 
assistance. I have not used any other sources or aids 
than the ones listed and have documented quotations 
and paraphrases as such. The thesis in its current or 
similar version has not been submitted to an auditing 
institution. 

 
Titel der Bachelor-/Masterarbeit*: 
(Title of the Bachelor’s/ Master’s* thesis): 
 
 
 
 
 
 
  *Nichtzutreffendes bitte streichen 
   (Please choose the appropriate) 
 
 
   
Ort, Datum 
(Place, date) 

 Unterschrift 
(Signature) 

 
Belehrung: 
Wer vorsätzlich gegen eine die Täuschung über 
Prüfungsleistungen betreffende Regelung einer 
Hochschulprüfungsordnung verstößt, handelt 
ordnungswidrig. Die Ordnungswidrigkeit kann mit einer 
Geldbuße von bis zu 50.000,00 € geahndet werden.  
Zuständige Verwaltungsbehörde für die Verfolgung 
und Ahndung von Ordnungswidrigkeiten ist der 
Kanzler/die Kanzlerin der Technischen Universität 
Dortmund. Im Falle eines mehrfachen oder sonstigen 
schwerwiegenden Täuschungsversuches kann der 
Prüfling zudem exmatrikuliert werden. (§ 63 Abs. 5 
Hochschulgesetz - HG - ). 
 

Die Abgabe einer falschen Versicherung an Eides statt 
wird mit Freiheitsstrafe bis zu 3 Jahren oder mit 
Geldstrafe bestraft.  
 

Die Technische Universität Dortmund wird gfls. 
elektronische Vergleichswerkzeuge (wie z.B. die 
Software „turnitin“) zur Überprüfung von Ordnungs-
widrigkeiten in Prüfungsverfahren nutzen. 
 

Die oben stehende Belehrung habe ich zur Kenntnis 
genommen: 

 Official notification: 
Any person who intentionally breaches any regulation 
of university examination regulations relating to 
deception in examination performance is acting 
improperly. This offense can be punished with a fine of 
up to €50,000.00. The competent administrative 
authority for the pursuit and prosecution of offenses of 
this type is the chancellor of TU Dortmund University. 
In the case of multiple or other serious attempts at 
deception, the examinee can also be unenrolled, 
section 63, subsection 5 of the North Rhine-
Westphalia Higher Education Act (Hochschulgesetz). 
 

The submission of a false affidavit will be punished 
with a prison sentence of up to three years or a fine. 
 

As may be necessary, TU Dortmund will make use of 
electronic plagiarism-prevention tools (e.g. the 
"turnitin" service) in order to monitor violations during 
the examination procedures. 
 

I have taken note of the above official notification:** 

 
 
   
Ort, Datum 
(Place, date) 

 Unterschrift 
(Signature) 

 
**Please be aware that solely the German version of the affidavit ("Eidesstattliche Versicherung") for the 
Bachelor’s/ Master’s thesis is the official and legally binding version. 



Acknowledgements

I would like to express my deep gratitude to Professor van Dalen, Professor Rabe and
Dr. Scheidler, for their rich support, their detailed and useful feedback, and their en-
couragement during the last months.
Furthermore I would like to thank Robert Simpson and Anna Eschweiler for their time

and support providing information and data for my research. Their fast and encouraging
responses supported me well.
Finally I also would like to thank my family and friends for supporting me.

Lukas Rost
March 8, 2018

i



Abstract

This thesis aims to develop a new forecasting algorithm, called Intermittent In-
tegrated Hierarchical Forecasting (IIHFC), for intermittent time series with an ad-
ministrative hierarchy. The IIHFC algorithm is built on the algorithm of Pennings
& Van Dalen (2017), from now called Integrated Hierarchical Forecasting (IHFC),
which uses a Basical Structural Time Series Model (BSM).
The first and most simple is a naive forecast, where the last non-zero consumption

in the estimation data is taken as forecast for the complete forecast period. The
next two methods applied are the Exponential Smoothing State Space Model (ETS)
and Auto-Regressive Integrated Mean Average (ARIMA) methods, widely used for
non-intermittent demand. For intermittent demand Croston’s methods (Croston
1972) and the Syntetos-Boylan approximation (SBA) (Syntetos & Boylan 2001)are
well established. Finally the IHFC algorithm from Pennings & Van Dalen (2017)
and the IIHFC algorithm from this thesis are compared.
The parameters in the last two methods are estimated with the help of the Low

memory BFGS algorithm and the Kalman Filter. The hierarchical forecast in the
first five methods is created as bottom-up forecast (Kahn 1998), the IHFC and
IIHFC algorithms automatically generate reconciled forecasts for all hierarchical
levels. The symmetric Mean absolute percentage error, Mean percentage error,
Tracking Signal, and Consumption Performance Index are calculated to compare
forecasting performance.
Depending on the average inter-demand interval different algorithms perform bet-

ter. For strong intermittent consumption, Croston’s method and the SBA perform
similar and very well. Both have a small tendency to underestimate consumption.
For less intermittent consumption, ETS and ARIMA perform better, with a small
tendency to overestimate consumption. Depending on the data sets the IHFC and
IIHFC can compete with the more simple algorithms. They offer more flexibility
when creating a demand model, but require much more expertise and computational
resources. In particular the estimation of the parameters can pose problematic for
short time series.

ii



Contents

List of Figures iv

List of Tables v

1. Introduction 1

2. Background 2
2.1. Statistical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1.1. Statistical Properties of Time Series . . . . . . . . . . . . . . . . . 2
2.1.2. Time Series Classification . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3. Probability Distributions . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.4. Forecast Performance Measures . . . . . . . . . . . . . . . . . . . . 7
2.1.5. Non-intermittent Demand Modelling and Forecasting . . . . . . . . 9
2.1.6. Naive Forecast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.7. Box-Jenkins Method . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.8. Exponential Smoothing . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.9. Basic StructuralModel . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2. Intermittent Demand Modelling and Parameter Estimation . . . . . . . . 17
2.2.1. Crostons Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2. Syntetos-Boylan-Approximation . . . . . . . . . . . . . . . . . . . . 18
2.2.3. Maximum Likelihood Estimation . . . . . . . . . . . . . . . . . . . 19
2.2.4. Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.5. Optimisation Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3. Hierarchical Gorecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.1. Basic Hierarchical Forecast . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2. Hierarchical Reconciliation . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.3. Integrated Hierarchical Forecasting . . . . . . . . . . . . . . . . . . 23

3. Algorithm Development 23
3.1. Data Preparation and Selection . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1. Data Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.2. Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.3. Data Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.4. Test Case Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2. Development of the New Forecast Algorithm . . . . . . . . . . . . . . . . . 31
3.2.1. Intermittent Integrated Hierarchical Forecast . . . . . . . . . . . . 31

iii



3.2.2. Calculation of the Intermittent Influence . . . . . . . . . . . . . . . 34
3.2.3. Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.4. Implementation Methods . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.5. Forecast Performance Measure . . . . . . . . . . . . . . . . . . . . 37

4. Conclusion and Further Research 38
4.1. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2. Further Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Bibliography 40

Appendices 44

A. R Code 44
A.1. Execution Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
A.2. Data Cleaning and Set Generation . . . . . . . . . . . . . . . . . . . . . . 46

A.2.1. Identifying Missing Values . . . . . . . . . . . . . . . . . . . . . . . 46
A.2.2. Time Period Selection . . . . . . . . . . . . . . . . . . . . . . . . . 49
A.2.3. Set Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

A.3. Tools to generate Forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . 55
A.3.1. IIHFC Model Generation . . . . . . . . . . . . . . . . . . . . . . . 55
A.3.2. Applying the Kalman Filter . . . . . . . . . . . . . . . . . . . . . . 61
A.3.3. Parameter Generation . . . . . . . . . . . . . . . . . . . . . . . . . 62
A.3.4. Parameter Optimisation . . . . . . . . . . . . . . . . . . . . . . . . 64
A.3.5. Forecast Algorithms and Measurements . . . . . . . . . . . . . . . 66

B. Figures 76

C. Extensive Tables 81
C.1. Random Initialised Parameters . . . . . . . . . . . . . . . . . . . . . . . . 81
C.2. Static Initialised Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 81
C.3. Comparison with simplistic Forecasting Methods . . . . . . . . . . . . . . 81

List of Figures

1. Figure explaining when a project is open or closed. . . . . . . . . . . . . . 27
2. Figure explaing when a department is open or closed. . . . . . . . . . . . . 27
3. Example of distinction between missing values and zero consumption. . . . 28

iv



4. Results of the auto-correlation function for ∼ 16000 {0,1}-time series . . . 34
5. ACF of a constant function . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6. ACF of a linear function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7. ACF of a quadratic function . . . . . . . . . . . . . . . . . . . . . . . . . . 77
8. ACF of an alternating function . . . . . . . . . . . . . . . . . . . . . . . . 78
9. ACF of a sinusoidal function . . . . . . . . . . . . . . . . . . . . . . . . . . 78
10. SBC classification schema . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
11. KHs exact and approximate classification schemas . . . . . . . . . . . . . 80
12. Classification schemas PK and PKa . . . . . . . . . . . . . . . . . . . . . . 80
13. Plot of average inter-demand interval against the coefficient of variation

for products sets from OCA. . . . . . . . . . . . . . . . . . . . . . . . . . . 81

List of Tables

1. Limits of the Syntetos-Boylan-Croston (SBC) classification . . . . . . . . . 5
2. Example flux table with masked data examples. . . . . . . . . . . . . . . . 25
3. Example time series table with masked data examples. . . . . . . . . . . . 26
4. Number of products left after cleaning steps. . . . . . . . . . . . . . . . . . 29
5. Number of products and sets after data cleaning. . . . . . . . . . . . . . . 30
6. Forecast performance with random initialised optimisation . . . . . . . . . 82
7. Forecast performance with static initialised optimisation . . . . . . . . . . 83
8. Forecast performance with static initialised optimisation, comparing with

non-integrated algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

v



1. Introduction

For most humanitarian organisations engaged in field operations, as well as for most
industrial companies, demand forecasting is indispensable for a smooth and efficient sup-
ply chain. In industrial companies, for instance renown automotive companies, imprecise
demand forecasts induces not only higher stock levels but can interrupt the entire produc-
tion line. Humanitarian organisations, such as Médecins Sans Frontières (MSF), suffer
from additional effects. Stock outs of humanitarian aid goods, as a results of unreliable
forecasts, lead to an inadequate treatment and lost lives and consequently damage the
public perception. To forestall these consequences humanitarian organisations raise their
safety stocks which leads, in conjunction with high lead times up to six months, to an
inefficient supply chain, more bound money and expired medication.
For a specific medical situation often a wide range of medication and medical items

is needed, similar in industrial production the use of many products is often related.
Including different hierarchical levels during the forecast process can cancel out noise
and include more widespread information. This, together with the inclusion of product
dependencies, has a strong impact on forecast accuracy, but induces a computational
challenge.
Further complications are induced by different distributed demand. While there exist

many applications and efficient algorithms for the convenient normal distribution, it is
not suitable for a wide range of products. With its symmetry and negative values it
is only applicable to fast moving products. Especially for slow moving products, where
demand only occurs intermittent, other probability distributions are much more suitable.
For the normal distribution exist a wast range of parameter estimations, e.g. the Kalman
filter, many of which generate biased estimations for non-Gaussian distributions. Other
parameter estimators, e.g. particle filters, suffer from the curse of dimensionality and
hence can be only applied if there are very few products.
How is it then possible to create accurate forecasts, for a large number products, with

different demand patterns, including product dependencies?
The top priority of this thesis is to develop a forecasting algorithm with improved

forecast performance. To improve the forecast performance product dependencies are
included as presented in Pennings & Van Dalen (2017), where the hierarchical structure
of the organisation is used. An additional benefit are the integrated forecasts for different
hierarchical levels, hence reducing operational complexity.
The second target is to create an algorithm applicable in practical situations, where

often the number of products is immense. So significant effort is taken to keep the

1



computational requirements modest, which necessitates the use of sub-setting methods
during the data preparation. Different distributed demand is included by the use of a
non-Gaussian probability distribution in the model generation, which requires a modified
parameter estimation.
Finally, to assess the performance of the forecasting algorithm real consumption data

from Operational Center of Amsterdam of Médecins Sans Frontières (MSF-OCA) is avail-
able. The forecast performance of the new algorithm is compared with different algo-
rithms for intermittent and non-intermittent demand.

2. Background

2.1. Statistical Methods

In this section different statistical properties are explained. At first different properties
of time series are defined and their meaning is explained. In the next part different
schemas for time series classification are presented, which can be sued to choose an
appropriate forecasting algorithm. The classification depends on the statistical properties
of the first part. Following that, different probability distributions are introduced. These
distributions are used to create stochastic models for time series. The last part presents
different forecast performance measures. With actual consumption for comparison, the
quality of a generated forecast can be calculated. Different measures might produce
different results, as errors are different weighted.

2.1.1. Statistical Properties of Time Series

Consumption time series from practical application have significantly different struc-
tures. These structures have a strong influence when modelling and forecasting future
consumption. Three important aspects are the (relative) fluctuation of the demand size,
the average inter-demand interval (adi), and the correlation of a time series with itself in
time. In addition the behaviour of these statistical properties, in addition to the average
consumption, in time is of interest. For this section a consumption time series of length
n is noted as

X = (x1, . . . , xn) (1)

2



Coefficient of Variation The cv2 is the variance of the time series divided by the
squared mean. Assuming that xi 6= 0, i = 1, . . . , n then the cv2 is calculated as

cv2 :=
Var(X)

E(x)2
. (2)

The R implementation included in the tsintermittent (tsintermittent) package calculates
the cv2 only with the non-zero values (Kourentzes 2014), with no value for cv2 if all
xi = 0. The cv2 describes how strong the demand of a time series is fluctuating in
relation to its mean value. The lower bound for the cv2 is 0, the upper bound, given that
all demand occurrences are non-negative is n− 1 (Katsnelson & Kotz 1957).

Average inter-demand interval Often stock review intervals are shorter than the time
between consumption. This results in 0 consumption for the stock reviews in between.
Not all consumption occurs in regular time intervals. Given a series of inter-demand
intervals p1, . . . , pk, k ≤ n for a time series X, then the adi p is calculated as

p :=
1

k

k∑
i=1

pi. (3)

.
An implementation is given by Kourentzes (2014) in the R package tsintermittent.

It is important to note that this definition is different from k+1
n , which is the number

of non-zero demand occurrences divided by the length of X. In formula 3 leading and
trailing zero consumptions of X are omitted.

Auto-correlation function The gives the correlation of a time series with itself at a
given time lag h and is defined in Brockwell & Davis (2016, p. 14) as

acf(h) :=
1

(n− h)σ2

n−h∑
i=0

(Xi − µ)(Xi+h − µ).

The auto-correlation function (acf) can be used to identify trends and seasonality in
existing time series. A trend present in a time series, leads to a correlation between xt
and xt+1. The strength of this correlation is calculated with acf(1), the type of trend
can be identified by the slope of the acf. Figure B in the appendix shows the plotted acf
values for a time series without trend 5, with a linear trend 6, and with trend following
a quadratic term 7.
In addition seasonal effects can be identified with the help of the acf. Oscillating

3



values for the acf represent seasonal influences, where a large peak at lag s can be used
to identify the length of a season. Figure 7 shows the acf values of a time series with
an alternating seasonal term with seasonal length s = 2 8 and of a sinusoidal seasonality
with seasonal length s = 12 9.

With the acf it can also be decided if the time series is uncorrelated in time. In theory,
a time series following the standard normal distribution is uncorrelated in time. Taking
the 0.975-quantiles of the standard normal distribution ±1.96 and dividing them by

√
n a

boundary is defined, where a acf value shows correlation if it is outside of this boundaries.
If more than 95% of the acf values are between these boundaries, it can be assumed that
the time series is uncorrelated in time (Brockwell & Davis 2016, p. 16).

Stationary Time Series According to (Brockwell & Davis 2016, p. 13) a time series is
called (weak) stationary if the mean value

µX(t) := E(Xt) (4)

and if the value of its auto-covariance

Cov(xt, xt+h) (5)

is independent from t for all values of h. The mean, variance, and other statistical
properties of a stationary time series are invariant in time. Stationary time series have
an important role when forecasting. The invariant mean, variance, and auto-covariance
can be used to generate forecasts with similar properties. Given a stationary time series
X = (x1, . . . , xn), with no significant auto-covariance values the forecast can be generated
as xn+1 = E(X) where the uncertainty is given by σ =

√
V ar(X).

One example of a stationary time series is the identical independent distributed (iid)
Noise (Brockwell & Davis 2016, p. 6), which is often used to model error terms. Ob-
servations in an iid Noise time series are independent draws from the same probability
distribution,

Xt ∼ P (µX , σ
2
X) (6)

Cov(Xt, Xs) = 0 t 6= s. (7)

An iid Noise time series can be forecast by its mean value, the uncertainty is again
given by the variance. Error terms in forecasting are often an iid Noise time series with
zero mean, also called White Noise. Terms following a White Noise distribution can be

4



Table 1: Limits of the SBC classification

.

Class adi cv2

Smooth 1 ≤ p ≤ 1.32 0 ≤ cv2 ≤ 0.49
Intermittent 0.32 < p 0 ≤ cv2 ≤ 0.49

Erratic 1 ≤ p ≤ 1.32 0.49 < cv2

Lumpy 0.32 < p 0.49 < cv2

omitted when calculating a forecast.

2.1.2. Time Series Classification

Different forecast methods perform better depending on the statistical properties of the
time series. In this section the three different classification schemas from the R pack-
ages tsintermittent are presented. They can be used to decided if Single Exponential
Smoothing (SES), Croston’s method, or the Syntetos-Boylan approximation (SBA) are
more suitable for forecasting. All classification schemas are build on the adi and the cv2.
The different forecasting methods are presented in detail in section 3.2.4.

Syntetos-Boylan-Crostons classification The classification schema (Syntetos et al.
2005) has four classes, Smooth, Intermittent, Erratic, and Lumpy. The schema is pre-
sented in Figure 9 in the appendix. Smooth time series are characterized by a low adi and
low variation. Intermittent time series have a higher adi but still a low variation. Erratic
(Lumpy) time series are characterized by a high degree of fluctuation and a low (high)
adi. Table 1 presents the limits for each class. Syntetos et al. (2005) argue that Crostons
method (Crostons method) (Croston 1972) for Smooth time series and the SBASyntetos
& Boylan (2001) for the all other classes perform best.

Kostenko-Hyndmans and Petropoulos-Kourentzess exact and approximate classifica-
tions Kostenko & Hyndman (2006) introduce an improved classification schema, classed
Kostenko-Hyndman (KH) presented in Figure 11 in the appendix. Depending on the
smoothing factor α used in the forecasting method, the cut-off value where SBA method
produces better estimates than Crostons method method is defined as

cv2 >
4p(2− p)− α(4− α)− p(p− 1)(4− α)(2− α)

p(4− α)(2p− α)

5



with
cv2 > 2− 3

2
p

as approximation, Kostenko-Hyndman approximate (KHa), independent from α. This
schema was further extend in Petropoulos & Kourentzes (2015), who argues that for
non-intermittent time series with p ≤ 1 SES should be used. The resulting schemas
Petropoulos-Kourentzes (PK) and Petropoulos-Kourentzes approximate (PKa) are pre-
sented in Figure 12 in the appendix.

2.1.3. Probability Distributions

Time series can be described as values drawn from a probability distribution. If the prob-
ability distribution together with its parameters are known, a forecast can be created as
newly drawn values from this distribution. If draws from the distribution are indepen-
dent in time, the mean of this distribution is used as forecast. This section introduces
three probability distributions, the Normal distribution, the Bernoulli distribution, and
the Possion distribution.

Normal Distribution The normal distribution is a continuous real-valued distribution,
with the probability distribution function (pdf) defined as

φ(x|µ, σ2) :=
1√

2πσ2
e−

(x−µ)2

2σ2 (8)

where µ is the mean and σ is the standard deviation. If a variable εt is assumed to be
normal distributed with mean µε and standard deviation σε it is noted as

εt ∼ N(µε, σ
2
ε ), (9)

in the univariate case and as

εt ∼ N(µε,Σε) (10)

in the multivariate case, where µε is the vector containing the means and Σε is the
covariance matrix. Because the Normal distribution is symmetric, it is often used to
model non-systematic errors In this case, the error term is assumed to be a White Noise
time series with zero-mean Normal distributed values.

6



Bernoulli Distribution The Bernoulli Distribution is a discrete valued distribution (John-
son et al. 2005, p. 145), taking only the values zero and one. The probability mass
function (pmf) is given as

φ(X|p̃) :=

p̃ X = 1

1− p̃ X = 0
, (11)

where p̃ is the probability X to be 1. The variance is then given by p̃(1 − p̃). If a time
series Xt is assumed to be Bernoulli distributed with probability p̃ it is noted as

Xt ∼ Bernoulli(p̃).

The Bernoulli distribution is used to model the occurrence of a event. The probability
of the event to happen is then p̃.

2.1.4. Forecast Performance Measures

In order to asses the forecasting performance of the different algorithm and to be able to
compare different algorithms, statistical measures are needed. Here are three groups of
forecast performance measures presented. Scale dependent measures, measures based on
percentage errors, and special measures. In the multivariate case, let Ai,t be the realised
consumption of product i at time t, similar the forecast for product i at time t is noted as
Fi,t. Let m be the number of products and let n be the length of the forecasting period.
In the univariate case At = A1,t and Ft = F1,t are defined.

Scale Dependent Measures Mean Error (ME), Mean Absolute Error (MAE), and Root
Squared Error (RMSE) are a few of many scale dependent measures. The following
definitions are used.

ME :=
1

n

n∑
t=1

At − Ft (12)

MAE :=
1

n

n∑
t=1

|At − Ft| (13)

RMSE :=

√√√√ 1

n

n∑
t=1

(At − Ft)2 (14)

(15)

7



Measures dependent on percentage errors The measures Mean percentage error (Mpe),
Mean absolute percentage error (Mape), symmetric Mean percentage error (sMpe), and
symmetric Mean absolute percentage error (sMape) are independent from the actual scale
of the time series. The definitions of the measures are taken from Hyndman & Koehler
(2006).

Mpe :=
1

n

n∑
t=1

At − Ft
|At|

(16)

Mape :=
1

n

n∑
t=1

|At − Ft|
|At|

(17)

sMpe :=
1

n

n∑
t=1

2(At − Ft)
|At|+ |Ft|

(18)

sMape :=
1

n

n∑
t=1

2|At − Ft|
|At|+ |Ft|

(19)

(20)

If At and Ft are zero, the forecast matches the consumption and the summand in the
error formulas is set to zero.

Special measures The Tracking Signal (TS) is used to see if an algorithm has the
tendency to over or underestimate. It is calculated in the following way

TS :=

n∑
t=1

At − Ft

1
n

n∑
t=1
|At − Ft|

, (21)

as defined in Trigg (2017). Values close to zero represents normal distributed forecast
errors without a strong bias. In contrary, values far from zero represent a strong bias,
with positive values representing underestimation and negative values overestimation.
The Consumption Performance Index (CPI) is used by MSF and is defined as perfor-

8



mance measure for multiple products in a project. It is defined as

CPIt :=
1

m

m∑
i=1

(|Am,t − Fi,t| < 0.5|Fi,t|), (22)

CPIi :=
1

n

t∑
t=1

(|Am,t − Fi,t| < 0.5|Fi,t|), (23)

CPI :=
1

mt

m∑
i=1

n∑
t=1

(|Ai,t − Fi,t| < 0.5|Fi,t|), (24)

where (|Am,t−Fi,t| < 0.5|Fi,t|) evaluates to 1 if the statement is true and to 0 otherwise.

2.1.5. Non-intermittent Demand Modelling and Forecasting

This section starts with a short introduction to different time series decompositions and
the state space model. It continues with presenting different forecasting methods for non-
intermittent demand. The forecasting methods are naive forecasting, the Box-Jenkins
method, exponential smoothing, and Basical Structural Time Series Model (BSM). A
time series of demand observation is noted as yt.

Time series decomposition A time series yt of demand observation can be decomposed
in different components. Possible components include trend, seasonal, cycle, and external
components in addition to the residuals. Depending on the us of the model these com-
ponents can be combined additive, multiplicative, or as mixture of both. The additive
model is given by

yt = µt + γt + ct + dt + εt,t = 1, . . . , n (25)

(26)

and the multiplicative model is given by

yt = µtγtctdtεt,t = 1, . . . , n. (27)

(28)

Model 27 can be restated as model 25 by using the logged values for yt (Durbin &
Koopman 2001, p. 9).
An example of a mixed model, with additive and multiplicative combined components,

is given in Hyndman et al. (2002). In this thesis only additive models are considered.

9



State Space model State space notation is similar for univariate and multivariate cases.
For given observation vectors yt the general discrete state space model is given as

yt = Zt(αt) +Gt(αt)εt, (29)

αt+1 = Tt(αt) +Ht(αt)ηt, t = 1, . . . , n. (30)

The state vector αt is considered to be unobserved and therefore unknown. The mod-
elling error is given by Ht(αt)ηt, where ηt follows a probability distribution. Similar the
measurement error is given by Gt(αt)εt. For models with a single source of error, like in
Ord et al. (1997) the error is changed so that

ηt = εt, t = 1, . . . , n. (31)

For an additive time series decomposition an linear state space model. Model (29)-
(30) can then be restated as matrix vector product and because of an additive error term
Gt(αt) and Ht(αt) become independent from αt. This results in the time variant linear
state space model

yt = Ztαt +Gtεt, (32)

αt+1 = Ttαt +Htηt, t = 1, . . . , n. (33)

A time invariant linear state space model is then given by

yt = Zαt +Gεt, (34)

αt+1 = Tαt +Hηt, t = 1, . . . , n. (35)

In literature different notation of state space models are used. The notation in this
work follows the implementation in the R package Fast Kalman Filter (FKF) where the
model used is similar to

yt = Ztαt +Gtεt, εt ∼ iid(I), (36)

αt+1 = Ttαt +Htηt,ηt ∼ iid(I), t = 1, . . . , n. (37)

The matrix I denotes the identity matrix of the dimension of yt and αt.

10



A Gaussian linear state space model in the form of

yt = Ztαt + G̃tε
∗
t ,ε
∗
t ∼ N(0,Σε), (38)

αt+1 = Ttαt + H̃tη
∗
t ,η
∗
t ∼ N(0,Ση), t = 1, . . . , n, (39)

can be restated as model (34)-(35) if the covariance matrices Σε and Ση are positive
definite. As covariance matrices they are also symmetric, so the Cholesky decomposition
Gentle (2009) can be calculated.d Therefore Σε and Ση can be decomposed in

ḠḠ′ = Σε,H̄H̄
′ = Ση (40)

and model (38)-(39) is transformed into model (34)-(35) by

Gt = G̃tḠ, and (41)

Ht = H̃tH̄, t = 1, . . . , n. (42)

2.1.6. Naive Forecast

The naive forecasting method is the most simple method. The last observation yt is
taken without modification as forecast for the future demand yt+1. For forecasts h steps
ahead this results in

yt+h = yt,h = 1, . . . . (43)

If a new observation is available it replaces the forecast. This forecasting method does
not require many computational resources but also fails to model any trend, seasonality
or error terms. The assumption is that yt is a stationary time series with zero variance.

Remark: This forecasting method can be easily adapted for intermittent demand. If yt
is intermittent then the last non-zero consumption ỹt is taken instead of yt. This will
result in a strong overestimation of future demand.

2.1.7. Box-Jenkins Method

The Box-Jenkins method (Box et al. 2008) is used to fit an Auto-Regressive Mean Average
(ARMA) or Auto-Regressive Integrated Mean Average (ARIMA) model to an univariate
time series of observations. The resulting model is then used to generate a forecast. The

11



Box-Jenkins method does not explicitly model the components 25 of the time series but
tries to find a suitable ARMA(p,q) model, where p denotes the order of the AR process
and q the order of the MA process. The model is then given as

yt − α1yt−1 − . . .− αpyt−p = εt + θ1εt−1 + . . .+ θqεt−q, (44)

with the regression coefficients αi from the AR(p) process and the smoothing coefficients
θi for the MA(q) process. The ARMAmodel requires a the observations to be a stationary
time series. The observations yt can be replaced with the differentiated observations

y′t = yt − yt−1 (45)

to remove non-stationary components. It may be necessary to repeat the differentiation
45 several times to archive sufficient stationary.
An ARIMA(p, d, q) process without seasonality is describe by

y′t = α1y
′
t−1 + . . .+ αpy

′
t−p + εt + θ1εt−1 + . . .+ θqεt−q, εt ∼ iid(I) (46)

y′t =

d∑
k=0

(
d

k

)
(−1)kyt−k, (47)

(48)

with d being the order of differentiation.
A seasonal component of period s can be included either by seasonal differentiating

y∗t = yt − yt−s (49)

or by adding an AR(s) or MA(s) term to equation 44. The seasonal component itself
may follow an ARMA model of higher degree. A seasonal ARIMA model is noted as
ARIMA(p, d, q)(Ps, Ds, Qs) where Ps, Ds, and Qs denote the order of the seasonal com-
ponent.
The acf and partial auto-correlation function (pacf) (Brockwell & Davis 2016, p.

16,62)can be used to determine the order of the ARIMA process (Brockwell & Davis
2016, p. 79,83-84). When the order of the model is determined the regression coefficient
and smoothing factors need to be estimated. The most used method to estimate these
parameters it the maximum likelihood (Brockwell & Davis 2016, p. 140), which is further
explained in section 2.2.3.
After the parameters for the ARIMA model are fitted a forecast can be generated by

12



using equations 46 and 47. From equation 47 follows that

yt+1 = −y′t+1 +
d∑

k=1

(
d

k

)
(−1)kyt−k+1 (50)

(51)

and from equation 46 y′t+1 can be estimated as

y′t+1 = α1y
′
t + . . .+ αpy

′
t−p+1 + θ1εt + . . .+ θqεt−q+1 (52)

where εt+1 is set to 0. An h step ahead forecast can be generated by iterative application
of 50 and 52.
For multivariate time series instead of ARMA and ARIMA the Vector Auto-Regressive

Mean Average (VARMA) and Vector Auto-Regressive Integrated Mean Average (VARIMA)
models can be used (Box G. E. P. & TIAO 1977).
The assumption that the time series y′t is stationary can be problematic in real ap-

plication. Commandeur & Koopman (2007, p. 133) argue that real time series are
non-stationary independent form the order of differentiation d. Therefore the question
arise how stationary is stationary enough.

2.1.8. Exponential Smoothing

A widely used method to generate forecasts for univariate time series is SES. SES was
first presented in Brown (1959, p. 52) and calculates a weighted average of past values.
Differently to the Moving Average process in the last section, all past observations are
included and the weights are applied multiplicative. The smoothed value ỹt for time t
for a given time series yt is

ỹt = αyt + (1− α)ỹt−1, ỹ0 = y0 (53)

= αyt +

t∑
k=1

(1− α)kyt−k. (54)

In this equation α is the smoothing factor. A forecast is then generated by setting
yt+1 = ỹt, similar a h step ahead forecast is generated as (Brown 1959, p. 52)

yt+h = ỹt. (55)

In the basic equation 53 seasonality and other components are not explicitly considered.

13



A refined exponential smoothing model is created by decomposing the time series and
then applying exponential smoothing to forecast each component separately. For the
additive decomposition in equation 25 this results in

yt = µt + γt + εt, εt ∼ N(0, σε) (56)

µt = µt−1 + βt−1 + α1εt, (57)

βt = βt−1 + α1α2εt (58)

γt = γt−s + α3εt (59)

taken from Hyndman et al. (2002).
Hyndman et al. (2002) created a universal framework to include multiplicative and

mixed models. They then rewrite the different equations in state space form, where the
state space model is linear when each component is additive. The additive model 59 then
has the state vector

αt = (µt, βt, γt, γt−1, . . . , γt−s+1)
′. (60)

With the state space notation also multivariate models can be noted.

2.1.9. Basic StructuralModel

BSM where introduced in Harvey (1989) and explicitly model different components of the
time series decomposition. If the time series decomposition is additive like in 25 the BSM
can be written as linear state space model (34)-(35). In addition BSM offer the possibility
to include cycle components and external factors. Differently to the Box-Jenkins method
they do not require a stationary time series.
In this section different possibilities to model the trend and seasonal components are

presented for univariate time series.

Modelling the Trend component The most simple model for the trend component is
the local level model. In this model it is assumed that there is no trend present in the
time series. The trend component is then modelled as

µt+1 = µt + ηt, ηt ∼ N(0, σ2η). (61)

The model described a random walk of the trend component µt, with an added White
Noise error ηt.

14



A simple, non-stationary linear trend µt in the consumption can be modelled by adding
a slope βt which is generated by a random walk. This can extend the local level model
into the local linear trend model (Durbin & Koopman 2001, p. 44) defined as

µt+1 = µt + βt + ηt, ηt ∼ N(0, σ2η) (62)

βt+1 = βt + ζt, ζt ∼ N(0, σ2ζ ). (63)

Another possibility is the additive damped trend model Gardner & Mckenzie (1985)
defined as

µt+1 = µt + βt + ηt, ηt ∼ N(0, σ2η) (64)

βt+1 = δβt + ζt, ζt ∼ N(0, σ2ζ ). (65)

It is also possible that µt follows an auto-regressive process, the model can then be written
as

µt+1 = δµt + βt + ηt, ηt ∼ N(0, σ2η) (66)

βt+1 = βt + ζt, ζt ∼ N(0, σ2ζ ). (67)

If the time series is multivariate the variances σ2η and σ2ζ can be replaced by covariance
matrices, to reduce the number of parameters it may be interesting to assume that the
covariance matrices are diagonal or even multiplicatives of the identity matrix, compare
with the approach in Pennings & Van Dalen (2017). The variables µt and βt are then
vectors and δ is replaces with the diagonal matrix ∆ = diag(δ1, . . . , δm).

Modelling the Seasonal component If the seasonal pattern is constant in time, then
it can be noted down for each season as constant γj with

s∑
j=1

γj = 0 (68)

with a seasonal length of s. Equation 68 can be rewritten as

γt+1 = −
s−1∑
j=1

γt+1−j . (69)

15



In general seasonality should be allowed to change over time, which can be archived by
adding an error term ωt resulting in

γt+1 = −
s−1∑
j=1

γt+1−j + ωt, ωt ∼ N(0, σ2ω). (70)

Another possibility to write as seasonal component is in a trigonometric form (Durbin
& Koopman 2001, p. 46)

γt =

bs/2c∑
j=1

γj,t, λj =
2πj

s
(71)

γj,t+1 = γj,t cos(λj) + γ∗j,t sin(λj) + ωt, ωt ∼ N(0, σ2ω) (72)

γ∗j,t+1 = −γj,t sin(λj) + γ∗j,t cos(λj) + ω∗t , ωt ∼ N(0, σ2ω∗ . (73)

This trigonometric includes damped error terms ωt and ω∗t , often parameters are reduced
by setting σω = σω∗ . Similar to the trend models the seasonal model in the multivariate
case is created by setting γt, γj,t, γ∗j,t as vectors and ωt, ω

∗
t as draws from the multivariate

normal distribution N(0,Σω).

Basic Structural Time Series Models A BSM can be written as combination of any
trend and seasonal model, additional cycle and external components can be added. Com-
bining a multivariate linear trend model with an autoregressive model for µt and a
damped seasonal component results in the following model

yt = µt + Φγt + εt, εt ∼ N(0,Σε) (74)

µt+1 = ∆µt + βt + ηt, ηt ∼ N(0,Ση) (75)

βt+1 = βt + ζt, ζt ∼ N(0,Σζ) (76)

γt =

bs/2c∑
j=1

γj,t, λj =
2πj

s
(77)

γj,t+1 = γj,t cos(λj) + γ∗j,t sin(λj) + ωt, ωt ∼ N(0,Σω) (78)

γ∗j,t+1 = −γj,t sin(λj) + γ∗j,t cos(λj) + ω∗t , ωt ∼ N(0,Σω∗ (79)

Φ = diag(φ1, . . . , φn) (80)

∆ = diag(δ1, . . . , δn). (81)

In this model the seasonal effects can be scaled with the diagonal matrix Φ.

16



This a model can be used to generate a forecast by removing all error terms and
projecting the model h steps ahead. Another possibility is to restate model (74)-(81) as
state space model in the form of a time invariant (34)-(35) (Durbin & Koopman 2001,
p. 46). The h step ahead forecast is then generate by generating the h step ahead state
vector αt with equation (35) and then applying the measurement equation (34). This
results in

yy+h = Zαt+h (82)

αt+h = T hαt. (83)

.
As state above the BSM does not require stationary time series, the disadvantage is

that the number of parameters in the BSM model is much higher than the number of
parameters used in the Box-Jenkins model. In addition to the model parameters of the
BSM also an initial state vector is needed, therefore estimating the parameters for a BSM
uses more compsutational resources.

2.2. Intermittent Demand Modelling and Parameter Estimation

The models and forecasting methods in section 2.1.5 perform good on non-intermittent
demand. For intermittent, particular with stochastic inter-demand intervals, they per-
form poorly. The algorithms are build on an update of consumption in the past, which
are mainly 0 for intermittent demand. This section first presents two forecasting methods
for intermittent demand. These forecasting methods provide a forecast of the average
consumption, not a forecast if demand occurs. The second part elaborates on methods
for the parameter estimation.

2.2.1. Crostons Method

The first work on modelling and forecasting of intermittent demand is from Croston
(1972). He assumes that the occurrence of demand is independent from the demand size.
His model is noted as

yt = xtzt (84)

17



where xt ∈ {0, 1} notes if demand occurs at time t and zt represents the demand size.
Further he assumes that

xt ∼ Bernoulli(
1

pt
), zt ∼ N(µ, σ2ε ), (85)

where pt is the adi at time t and zt is drawn independently. Croston uses then separate
exponential smoothing equations for demand size and demand occurrence

pt = pt−1, yt = 0pt = αpt−1 + (1− α)q, yt 6= 0 (86)

where q is the last inter-demand interval. The exponential smoothing equations are only
updated when there is a non-zero demand.
The model is derived from the equation

E(yt) =
µ

p
(87)

, and with the update only when there is non-zero demand, the actual demand size is
not influenced by the zero consumption.
A forecast is then generated similar to equation (55) for SES as

yt+h =
z̃t
pt
. (88)

2.2.2. Syntetos-Boylan-Approximation

Syntetos & Boylan (2001) improved Crostons method, as it containted a mathematical
mistake. Croston assumed that

E(yt) = E(
zt
pt

) = E(zt) E(
1

pt
) =

E(zt)

E(pt)
(89)

where the last equation is not true. Syntetos & Boylan (2001) propose an approximation
given by

E(yt) = E(zt) E(
1

ptcpt−1
) ≈ µ

p
. (90)

with the second equation equal for c = ∞. With a large enough value for c, in general
c > 100, the approximation removes most of the bias in Crostons method. Instead of the
exponential smoothing equation (86) for pt a similar equation is used for 1

ptcpt−1 , where

18



pt is recorded similar. The forecast is then given by

yt = zt
1

ptcpt−1
. (91)

2.2.3. Maximum Likelihood Estimation

As mentioned before the maximum likelihood method is often used to estimate necessary
parameters. For the Box-Jenkins method the parameters are the regression coefficient
and the smoothing factors, for the exponential smoothing it is the smoothing factors and
for the BSM the parameters are the model parameters in addition to the initial state
vector α0, and the initial covariance matrix P0. Other possibilities to calculate α0, P0 are
given in Durbin & Koopman (2001, p. 123-146) If a demand model, a set of parameters θ,
and a set of observations Yn = (y1, . . . , yn)′ are given, then the likelihood function L(Yn|θ)
descries the likelihood of the observations Yn if the model is given with parameters θ.
As the observations in Yt−1 = (y1, . . . , yt−1)

′ are known when yt is calculated can the
likelihood function be rewritten as

L(Yn|θ) = p(y1, . . . , yn|θ) = p(y1|θ)
n∏
t=2

p(yt|Yt−1, θ)). (92)

Often the log-likelihood is calculated instead to improve the numerical stability. Equation
92 is then restated as

LogL(Yn|θ) =

n∑
t=1

log p(yt|Yt−1, θ), p(y1|Y0, θ) := p(y1|θ). (93)

The maximum likelihood method then aims to maximise L(Yn|θ) what is similar to
minimizing the negative log-likelihood given by the negative of 93. The different optimi-
sations algorithms are explained in section 2.2.5.

2.2.4. Kalman Filter

In order to efficiently calculate the log-likelihood of parameter set for the BSM given in
equation (74)-(81) the Kalman Filter (KF) can be used. The KF was first published in
Kalman (1960) and can be used to adjust the state vector of a state space model when
observations are available. Durbin & Koopman (2001, p. 43) give a notation of the KF
which modified for model (34)-(35) defines the KF as

19



vt = yt − Zαt, Ft = ZPtZ
′ +GG′,

αt+1 = Tαt +Ktvt, Pt+1 = TPt(T −KtZ)′ +HH ′,

where Kt = TPtZ
′F−1t is called Kalman gain. The distinction between the estimate of

the state vector at and the state vector αt was dropped in this notation. If the state vector
at time t was given as αt, then the innovation vt describes what part of the observations
was not explained by the current state vector.
In case an observation is missing the update reduces to

αt+1 = Tαt, Pt+1 = TPtT
′ +HH ′, (94)

as shown in (Durbin & Koopman 2001, p. 111).
With the KF the log-likelihood for the BSM can then be calculated according to Durbin

& Koopman (2001, p. 171) as

LogL(Yn|θ) = −np
2

log 2π − 1

2

n∑
t=1

(log |Ft|+ +v′tF
−1
t vt). (95)

2.2.5. Optimisation Algorithms

Newton’s method is the most known algorithm to minimise a function. In general more
than one parameter needs to be estimated, the multidimensional Newton iteration for a
function f with parameter θ is then given by

θn+1 = θn − Jf (θn)−1f(θn) (96)

where Jf (θn)−1 is the inverse of the Jacobi matrix of f at point θn. Calculating this
inverse is often not possible or to expensive, Quasi-Newton method replace therefore
Jf (θn) by an approximation. Parameters which minimize f , at the same time evaluate
to 0 in the derivative f ′. Quasi-Newton methods try to find parameter sets where the
vector values function f ′ evaluates to zero. The Jacobi matrix of f ′ is then the Hes-
sian matrix of f , which is symmetric. The most common used Quasi-Newton method
is the Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS) which was original pub-
lished in BROYDEN (1970), Fletcher (1970), Goldfarb (1970), and Shanno (1970). The
BFGS algorithm updates the approximation of the Hessian matrix, so that the updated

20



approximation stays positive definite.
In order to limit the memory needed to store the approximation of the Hessian matrix,

Byrd et al. (1995) introduces a limited memory version of the BFGS. Instead of storing
the approximation at each step of the iteration, only a small number of correction pairs
for different search directions are stored. This pairs can then be used to define the
approximation of the Hessian matrix.
Newton’s method, as well as the Quasi-Newton approximations converge in general

only toward a local minimum. This problem can partially be avoided by using differ-
ent, random generated initial parameter sets, also called multi-start optimisation (Tu &
Mayne 2002).

2.3. Hierarchical Gorecasting

Most organisations and companies have a hierarchical structure in their administration.
Forecasts of future demand may therefore be needed on different hierarchical levels and
it is important that the aggregated forecast of the lower levels add up to the forecast of
the higher level, the forecasts need to be reconciled.
Three classical methods to create hierarchical forecasts are the top-down, bottom-

up (Widiarta et al. 2009), and the middle-out forecasts. This section gives a short
introduction on these methods, in addition methods to reconcile forecasts generated on
all levels are presented. Finally the section concludes with the forecasting algorithm of
Pennings & Van Dalen (2017) which automatically generates a reconciled hierarchical
forecast.

2.3.1. Basic Hierarchical Forecast

Top-down The top-down approach only generates a forecast for the highest level in
the hierarchy. This forecast is then decomposed in order to create the forecast at lower
levels. One common decomposition method uses the average of the historical sales as
decomposition weights. This can be either the average of the proportion in each time
period, which results in

pj =
1

n

n∑
t=1

yj,t
yt

(97)

21



or the proportion of the complete time period

pj =

n∑
t=1

yj,t

n∑
t=1

yt

. (98)

Additional ways to decompose top-level forecasts are presented in Gross & Sohl (1990).

bottom-up The bottom-up approach starts at the lowest level in the hierarchy. For
each base product a forecast is generated. These forecasts are then aggregated according
to the hierarchical structure to generate the forecasts for the higher levels. Dangerfield &
Morris (1992) showed that in most cases this method generates better forecasts then the
top-down approach. In addition, the decision how to decompose the forecast is omitted
here.

middle-out The middle-out approach combines the top-down and the bottom-up ap-
proaches. The forecast is generated on a intermediate level of the hierarchy. From this
level the forecasts are then aggregated to create the forecasts for the higher hierarchy
and decomposed to generate the forecasts for the lower levels.

2.3.2. Hierarchical Reconciliation

In addition to the above mentioned methods, forecasts can be generated for all hierarchi-
cal levels. In order to add up according to the hierarchical structure, these forecasts need
to be reconciled. Hyndman et al. (2011) present different methods which can be used
to reconcile forecasts. Assuming that S is the design matrix describing the hierarchical
structure of the forecast, the reconciliation follows the following approach. From the
consumption of the base products xt the consumption in the other levels of the hierarchy
can be calculated as Sxt. In a first step the consumption of the base products xt is
created from the consumption of all levels. xt = Pyt, xt is therefore the consumption at
bottom level, adjusted with the influence of the top levels. The reconciled forecast yt for
all levels is then generated with ỹtSxt = SPyt. One possibility for P is given as

P = (S′S)−1S′ (99)

22



2.3.3. Integrated Hierarchical Forecasting

Pennings & Van Dalen (2017) present an additional method to create hierarchical fore-
casts. Differently from the other methods, the hierarchical structure is not added after
the forecasts are generated, but already in the forecasting model. Their model is based
on the linear time-invariant Gaussian BSM (38)-(39), with diagonal Σε, representing
independent measurement errors, and

Σζ = σ2ζ I, (100)

Σω = Σω∗ = σ2ωI. (101)

. Dependencies between different products are included in the non-diagonal covariance
matrix Ση. The observation vector yt does not only contain observations from the base
products but from all hierarchical levels. The hierarchical structure is represented in
design matrix S. The measurement equation (74) is then updated to

yt = S(µt + Φγt) + εt, εt ∼ N(0,Σε). (102)

While the state vector αt = (µt, βt, γj,t, γ
∗
j,t)
′ contains only information about the base

products, the update step applied by the KF includes also the observations of the higher
hierarchical levels.
Pennings & Van Dalen (2017) estimate the parameters by using the the BFGS algo-

rithm with 500 randomized starts and the KF to calculate the log-likelihood.

3. Algorithm Development

In this section a new algorithm for intermittent demand forecasting is developed. The
section is divided in three parts where the first part presents the available consumption
data and the steps taken to prepare this data. In the second part the theoretical frame-
work of the new algorithm is developed. The last part explains the different steps taken
to implement this new algorithm as well as the algorithms used for comparison.

3.1. Data Preparation and Selection

Before developing an advanced forecasting algorithm, data is needed to asses the fore-
casting performance. Johnston et al. (2003) showed that up to 60% of products can
follow an intermittent demand pattern. For medical supplies, particular in humanitarian
aid organisations, the similar is true. Therefore, the consumption data of these supplies

23



can be classified as presented in section 2.1.2. Consumption data from real applications
has advantages over randomly generated data, because it includes unexpected cases.
This data can be used to estimate parameters of models and algorithms and to asses
the forecast performance, with results similar to those in practice. Before developing
an advanced algorithm, the available data has to be prepared. In this section, the data
sources and the data itself are described, the data is cleaned, and part of the data is
selected for testing. For privacy protection all information about projects, departments
and products is masked with generated codes.

3.1.1. Data Sources

This thesis is supported by a data sources from an organisations of MSF. The MSF-OCA
provides their Consumption Tools from several projects available as an Excel spreadsheet.

Consumption Tool The Consumption Tool is a Excel spreadsheet used by MSF-OCA.
For each project the consumption is recorded in a separate Excel file. MSF-OCA provides
forty six Consumption Tools files for this work. This file consists of several tabs, including
general product information, a mask to enter realised consumption, a mask to enter out-
of-stocks, in MSF called ruptures, a interface to show only information for a particular
department, and an overview tab which includes a Consumption Performance Indicator.
Separate tabs are used as a database. These databases are read with an R script to

extract the product codes, departments, month and amount of consumption. The project
names are masked with CT0001 to CT0047.

3.1.2. Data Description

The data tables extracted from the Consumption Tool contain the project code, the
department code, the product code, the month, and the amount of consumption. The
product code contains additional information about product categorisation. There are
three different product categories, which ordered by their hierarchical order are Group,
Family, and Root. The Group category describes the general use of the product in
projects, such as administrative equipment, logistic supplies, drugs, medical supplements,
kits, nourishment, medical tests, and transport equipment. This work focuses on medical
supplies, therefore only drugs and medical tests are included. The Family category is
in example used to categorize drugs further into vaccines, oral drugs, and injectable
drugs among others. The Root category describes the type of medication, in example all
vaccines against a specific disease are in the same Root category.

24



For the further work the product code is separated into the above described parts.
This results in a table similar to Table 2 with the columns Project, Department, Group,
Family, Root, Product, Month, and Amount.

Table 2: Example flux table with masked data examples.

Project Department Group Family Root Product Month Amount

CT0001 1 A ABA AGGA AFA Dez 16 2
CT0001 2 A ABA AGGA AFA Dez 16 16
CT0001 1 A ABA AGGA AFA Dez 16 28
CT0001 2 A ABA AGGA AFA Nov 16 59
CT0001 1 A ABA AGGA AFA Nov 16 8
CT0001 2 A ABA AGGA AFA Okt 16 34

3.1.3. Data Cleaning

Before the data can be used to classify demand, estimate parameters, and asses the fore-
cast performance, the data has the be cleaned. At first the duplicates and unreasonable
entries are deleted. Next, time series are constructed for each product from the flux
table. In the last step, missing values in contrary to zero consumption are identified.
Finally, this section closes with a short note why outlier detection was omitted.

Removing Duplicates The flux table 2 contains duplicated entries. These entries con-
tain exactly the same information including the month and amount of consumption.
Hence, it is assumed that the duplications results from a software error or human mis-
take. In the data from MSF-OCA are 350 entries duplicates out of 1 141 204 which leaves
1 140 854 entries.

Identify Unreasonable Entries After removing duplicated entries, entries containing
empty fields are removed. With a empty field, it cannot be used to construct the time
series because identification of the product or month is not clear. In some cases, the
missing values were due to errors in the Excel files. Some lines where shifted in their
position, which is not recognised by the parsing algorithm in R.

Construct Time Series Table Next, the time series table is constructed from the flux
table. For this, all lines with the same product and project information are combined
and the different months are added as new columns. In the end, the monthly columns
are sorted by date. This results in table with one line for each distinctive entry in the

25



Table 3: Example time series table with masked data examples.

Project Dep. Group Family Root Product Jan
2013

Feb
2013

. . .

CT0001 1 A AAA AAAA AAA 0 0 . . .
CT0001 1 A AAA AAAA BAA 0 0 . . .
CT0001 1 B BAA BAAA CAA 83 66 . . .
CT0001 1 B CAA CAAA DAA 10 4 . . .
CT0001 1 B CAA DAAA EAA 0 1 . . .
CT0001 1 B CAA EAAA FAA 0 0 . . .

flux table, hence 129 312 lines for MSF-OCA. The structure of this table is similar to
Table 3.

Identifying Missing Values After the time series tables are constructed, missing values
need to be distinguished from zero consumption. Zero consumption is often not entered
into the flux table, and therefore also not in the time series table. In order to distinguish
between missing values and zero consumption algorithm A.2.1 in the appendix is applied.
The algorithm is build on the assumption that there are two reasons why there may be
a missing value instead of zero consumption (Lukas Rost n.d.). When applying this
algorithm, a entry with zero consumption is treated as consumption in contrary to a
missing value.
The first reason may be that a project did not yet start or was already finished.

In addition a project may be interrupted for some time for security reasons. In this
cases a project is considered closed, which means consumption for all products in this
project should be missing from the time series table in the specific months. A project is
considered open when it is not closed. This is visualised in Figure 1.

26



Figure 1: Figure explaining when a project is open or closed.
The second reason is that a single department was opened after the project started,

or closed before the project finished. This would be the case when the consumption for
all products in department is missing from the beginning up to a certain month, or from
a certain month until the end. In this cases we consider this department as closed, in
the time between the first consumption and the last consumption it is considered open.
This is visualised in Figure 2.

Figure 2: Figure explaing when a department is open or closed.
If a department, and the associated project, is open but there is a missing value, this

value is treated as zero consumption. The full process is visualised in the example in

27



Figure 3

Figure 3: Example of distinction between missing values and zero consumption.

Outlier Detection Finally, a short note on outlier detection. As many medical supplies
are not needed on a regular basis, their demand is intermittent which makes outlier
detection difficult. The consumption data for one specific medication can show strong
fluctuation in demand, including many very low values. Even so, most of these time
series would be marked when applying outlier detection methods, but the time series
are reasonable as the related disease occurs irregular. Hence no outlier detection was
applied.

3.1.4. Test Case Selection

From the data available, several example cases are used to asses the performance of the
different forecasting algorithms. Also their performance in comparison with the judge-
mental field forecasts can be assessed. In order to have a good basis for the performance
assessment, parts of the data are used where errors in the data are more unlikely.
At first, a time period is selected where a large number of time series has no missing

values, which were identified in 3.1.3. Then time series are removed, which which have
missing values in the selected period or specific statical properties. In the next step, all
time series for a single product are grouped together, coming from different projects and
department. Each of these sets are then checked for a minimum and maximum number
of time series and for a minimal consumption. With this step, a hierarchical structure

28



is present without going over the computational resources available. For the remaining
sets, the hierarchical structure is calculated and examples, which represent the time series
classes introduced in 2.1.2 are selected. Finally, each time series is divided in two part,
one is used for the parameter estimation, the other to asses the forecasting performance.
The used sets are included in the digital appendix.

Time Period Selection In order to prevent erroneous data from influencing the results,
only projects and departments which were open for the complete period are used. Not all
projects did start or finish at the same time, so taking the maximum time range from the
time series table would remove most consumption data. If the period is to small, many
data points are lost and the time series may be insufficient for a forecast. Therefore, a
suitable period is searched including the most data points.
Assuming a similar weight on the length and number of available time series, the target

function is the product of the length of the chosen interval and the number of time series,
which have no missing values in the selected interval.
For MSF-OCA this results in the time span from January 2014 until December 2016.

Time Series Exclusion After the best period was selected, several time series are re-
moved. All time series with missing values, only zero consumption, or zero variance are
removed. Time series with only zero consumption are products that are so sparsely used
that a forecast is not possible because the inter-demand interval is greater then the time
period.Variance zero time series have a static continuation of their current value as fore-
cast.Also products in the administrative, logistics and construction groups are removed,
as this work focuses on medical supplies.
For MSF-OCA this results in X number of products for testing.How many products

where removed in each step is presented in Table 4.

Table 4: Number of products left after cleaning steps.

Cleaning Step Removed products
MSF-OCA

Remaining products
MSF-OCA

Original 0 129 312
Missing values 77 200 52 112

< 2 non-zero entries 32 905 19 207
Var < ε 39 19 168

Specific Groups 1 734 17 434

29



Create Product Sets In this step, a set is created for each product, which includes the
time series of this product from all projects and departments. Each set can then later
be used to apply a hierarchical forecasting algorithm.
After the products are grouped together, the number of each products in a set is

calculated. Sets with more than 15 products are excluded to limit the computational
effort in the tests. Sets with less than five products are excluded to have a remaining
hierarchical structure. Also the overall consumption in the set should be higher than
100. If the overall consumption is too low, either the average inter-demand interval is
very large or the consumption is very low.
The number of sets and products which are left is presented in Table 5.

Table 5: Number of products and sets after data cleaning.

Cleaning Step MSF-OCA Products

Original 17434 928
< 5 products 16585 500
> 15 products 1585 187

Low Consumption 1564 184

Also in this step, the design matrix S is constructed which is later used. With the help
the design matrix, the consumption on higher hierarchical levels is computed and added
to the set.

Select Test Cases In section 2.1.2 three different time series classification schemas were
given, not including the exact KH and PK models as they need a smoothing factor α
for calculation. This work uses the SBC classification. While KH and PK are more
accurate when deciding whether to use Croston’s method 2.2.1 or the SBA 2.2.2, offers
the SBC classification four different classes which can help to asses the performance of
the different forecasting algorithms. In particular it is of interest if the performance
of the new algorithms are depending on the adi or cv2 independent from the other.
Therefore from the remaining sets, one example for each class sector of the SBC schema
is chosen. In order to chose these examples, the average of the coefficient of variations
and the average of the average inter-demand intervals are calculated for each set. These
examples are later used to test and develop the algorithms and to asses the forecasting
performance for different algorithms depending on the demand pattern.
Remark: Figure 13 shows the plot of the average adi against the average cv2 for the

sets of MSF-OCA. As remarked in 1 the strong intermittent demand in humanitarian
logistics is clearly visible.

30



Creating Estimation and Forecast Time Series Finally, the time series are split into
two parts. The first part is used to estimate the parameters in the algorithms and the
second part is used to asses the forecast performance and compare it with the forecast
performance of different algorithms. For MSF-OCA we use the first 24 months for the
estimation and last 12 months to compare the forecasting performance.

3.2. Development of the New Forecast Algorithm

3.2.1. Intermittent Integrated Hierarchical Forecast

The advanced model In order to use the prepared data to estimate parameters and
assess the forecast performance the advanced demand model is created. The new model
is based on the model in Pennings & Van Dalen (2017), which was explained in section
2.3.3, from now on referred to as Integrated Hierarchical Forecasting (IHFC). Following
the idea of Croston’s method 2.2.1 where demand is modelled as

yt = xtzt (103)

the measurement equation (102) in the IHFC is modified. The design matrix S is replaced
by SXt whereXt is a diagonal matrix with entries similar defined as in Croston’s method.
This results in the following model

yt = SXt(µt +Aγt) + εt, εt ∼ N(0,Σε) (104)

µt = ∆µt−1 + βt + ηt, ηt ∼ N(0,Ση) (105)

βt = βt−1 + ζt, ζt ∼ N(0, σ2ζI) (106)

γt =

bs/2c∑
j=1

γj,t, λj =
2πj

s
(107)

γj,t = γj,t−1 cos(λj) + γ∗j,t−1 sin(λj) + ωj,t, ωj,t ∼ N(0, σ2ωI) (108)

γ∗j,t = −γj,t−1 sin(λj) + γ∗j,t−1 cos(λj) + ω∗j,t, ω∗j,t ∼ N(0, σ2ωI) (109)

(110)

Similar to Pennings & Van Dalen (2017) this model includes variant seasonal effects and
variant trend. With a non-diagonal Ση also cross-correlation between different products
are included. The model can be rewritten in BSM form (34)-(35) which then enables the

31



use of the KF. The state vector αt is then defined as

αt = (µt, βt, γ̃t)
′ (111)

where γ̃t contains γj,t and γ∗j,t for j = 1, . . . , bs/2c for each base product. The measure-
ment matrix Zt is then given as

Zt = SXtZ̃,Z̃ = (In, 0n,Φ) (112)

and Φ is the block-diagonal matrix where the i-th block contains n times φi. The matrix
G for the measurement error is defined as the Cholesky decomposition of the measurement
matrix Σε

GG′ = Σε. (113)

As Σε is a positive diagonal matrix, G is also a diagonal matrix where the entries are the
square root of the entries in Σε.
The transition matrix for the state vector αt is then given by

T =

∆ In

In

Ũ

 , (114)

where Ũ is the block-diagonal matrix which repeats n times the matrix U defined as

U =



cos(λ1) sin(λ1)

cos(λ2) sin(λ2)
. . . . . .

cos(λbs/2c) sin(λbs/2c)

− sin(λ1) cos(λ1)

−sin(λ2) cos(λ2)
. . . . . .

− sin(λbs/2c) cos(λbs/2c)


.

(115)

32



The modelling matrix H is then defined as

H =

Σ̃η

σζIn

σωIsn


In In

In

Isn

 (116)

with Σ̃ηΣ̃
′
η = Ση is defined again with the Cholesky decomposition.

Setting Ση to be diagonal removes the dependencies between different products from
the model. Setting ∆ to the identity matrix and removing the seasonal component by set-
ting A zero, the model is reduced to a local linear trend model. If ∆ is used for βt instead
of µt the model is an additive damped trend model. Removing the measurements for
the higher hierarchies and setting S as identity matrix results in a non-integrated model.
Finally setting Xt as identity matrix for all t removes the adaptation for intermittent
demand.
In the parameter estimation Xt is set to the identity matrix and zero consumption

measurements are treated as missing values. When applying the KF with a missing
measurement the state vector is not adjusted instead the forecast for this entry is taken
as measurement. Let yt,i be the i-th entry of the observation vector, if yt,i is missing
then the KF update is done with ỹt,i defined as

ỹt,i = (ZtTαt−1)i = (SXtZ̃Tαt−1)i (117)

vt,i = ỹt,i − (SXtZ̃Tαt−1)i = 0. (118)

As the innovation vt,i for this entry is 0 the influence in the second term of the log-
likelihood for this entry is removed of equation 95. If vt,i = 0 then the i-th row and the
i-th column of F−1t in

v′tF
−1
t vt (119)

are multiplied with 0. Therefore the influence of the missing value is removed in the
log-likelihood term.
The time variant matrix Xt which is needed in the forecasting process, but not for

the estimation of the other model parameters, is generated as a random draw from
{0, 1}. Different possibilities for the random distribution and the estimation of their
corresponding parameters are discussed next.

33



3.2.2. Calculation of the Intermittent Influence

To create the diagonal matrix Xt with entries from {0, 1} the following methods are
possible.
The first, and most simple, method is to draw the entries of Xt for each product

independently as a Bernoulli trial with a time invariant probability 1
p with p being the

adi. This assumes that the occurrence of demand is independent of the past occurrences
and independent between different products and that zero consumption is always a result
of Xt and not already present in the state vector αt.

In order to test the assumption that the occurrence of demand is independent of past
occurrences we look at the results of the auto-correlation function. For this the available
time series where reduced to {0,1}-time series by setting all non-zero values to one. From
this the the auto-correlation values are calculated and presented as in boxplot for each
lag value h.

Figure 4: Results of the auto-correlation function for ∼ 16000 {0,1}-time series
Figure 4 shows a strong auto-correlation at lag one.
Therefore, the second model to created Xt to include the results from the auto-

correlation plot, consist for two dependent probabilities for the Bernoulli trial. If the
last demand occurrence was zero the value for Xt is drawn with probability w0, if the
last demand occurrence was non-zero the value is drawn with probability w1. The prob-

34



abilities can be calculated with the definition of conditional probabilities.

w0 := P (xt = 1|xt−1 = 0) =
P (xt = 1 ∧ xt−1 = 0)

P (xt−1 = 0)

w1 := P (xt = 1|xt−1 = 1) =
P (xt = 1 ∧ xt−1 = 1)

P (xt−1 = 1)

Where P (xt−1 = 0) := 1 − P (xt−1 = 1) and P (xt−1 = 1) = 1/p̃ with p̃ the average
demand interval in the estimation part of the time series.
The third approach follows the idea of Croston’s method, where the adi is smoothed

each time a non-zero demand occurs. Each diagonal entry in Xt corresponds to a time
series of a base product. The smoothed pt values for these time series can then be created
similar to Croston’s method during the estimation. The last pt value is then used for
the forecast. This can be further refined by using the SBA to forecast if the time series
classification of section 2.1.2 propose this.
The forecasts for all the intermittent methods is then created as average consumption.

A h step ahead forecast is then defined as

yt+h = SX̃ZT hαt (120)

for the first model. Matrix X̃ has as diagonal entries 1
pi

where pi is the adi of the i-th
base product. The Matrix X̃ is similar in the third case with pi either replaced with the
last smoothed value of pt,i in Croston’s method or with pt,icpt,i−1 for the SBA method.
In the second case, where conditional probabilities are used, a large sample is generated
from the (w0,i, w1,i) pairs. The mean of these samples is then used for the i-th diagonal
entry in X̃.

3.2.3. Parameter Estimation

Both models, the one presented in 2.3.3 and the advanced model developed in the last
section 3.2.1 require a number of parameters to be estimated.

Parameters The following parameters need to be estimated. For the model itself there
are the entries of diagonal matrix A which scales the influence of the seasonal components,
this are n parameters. There are the entries of ∆, which are the regression coefficient
for the state vector, again n parameters. In addition there is the covariance matrix Ση

which includes the cross-correlations between the different products in one set. As Ση

35



is symmetric, n2/2 + n/2 parameters are needed. In addition the diagonal covariance
matrix of the measurement error is needed, resulting in d parameters. And the variances
σ2ζ and σ2ω are needed. This results in n2/2 + 7/2n+ 2 + d parameters.
In addition, to apply the Kalman filter, the initial states are required, as well as the

covariance of the initial state vector. For α0 = (µ0, β0, γj,0, γ
∗
j,0) this results in n(s + 2)

parameters. In addition the initial covariance matrix P0 of the state vector α0 is needed
for the KF Pennings & Van Dalen (2017) used 500 random initialized starts for the BFGS
algorithm. As computational resources where limited, different methods are used in this
thesis.
The first method uses 200 partly random generated starts of the following structure.

Under the assumption that similar products behave similar were 8 random values created
for each start. One for the initial state vector α0, the diagonal of P0, the diagonal of the
covariance matrices Σε and Ση, for the seasonal scale matrix Φ, the regression coefficient
matrix ∆, and for the variances σ2ζ and σ2ω. In each vector or matrix the random value
is used for all entries, for simplicity are the non-diagonal entries of Ση are set to 0.
The random values are drawn from a N(0, 2) distribution. Additional for each set of
parameters a duplicate was generate where the first part of α0, namely µ0 was replaced
by the mean of the base product consumption. For each of these 400 parameter sets the
log-likelihood was calculated, then the best estimate was taken and further optimised
using the Low memory BFGS (L-BFGS) algorithm.
For the second method the parameters were chosen under the initial assumption of a

stationary time series without seasonality, without cross-dependencies between different
products. The covariance matrices Ση and Σε where set to the identity matrix, similar
the variances σ2ζ and σ2ω were set to 1. The initial state vector α0 was set to 0 except
for the first part µ0 which was set to the mean of each base product consumption. The
regression matrix ∆ and scale matrix Φ for seasonal effects was set to the identity matrix.
The covariance matrix P0 was set to 107 on the diagonal entries, representing a strong
uncertainty in the initial state vector. With this starting parameters again the L-BFGS
algorithm was applied.

3.2.4. Implementation Methods

ARIMA, ETS, CRO, SBA implementation The forecasting methods descried in sec-
tions 2.1.5-2.2.2 are implemented for univariate time series. Therefore these algorithms
neither include the hierarchical structure nor product dependencies.
The hierarchical forecast for these products is generated as bottom-up forecast. The

univariate forecasting methods are applied for each base product time series, and the

36



higher hierarchical levels are then generated with the help of the design matrix S. Addi-
tional the reconciliation method presented in Hyndman et al. (2011) was tested but did
not result in an improvement.
For the implementation of the ARIMA forecast the methods from the R package fore-

cast were taken. The available auto-arima function provides a automated framework
to select the order of the ARIMA model. For this model the required parameters are
automatically estimated.
The Exponential Smoothing State Space Model (ETS) implementation, also part of

the forecast package and built on Hyndman et al. (2002), provides similar the possibility
to automatically select a model and to estimate the required smoothing factors.
In the tsintermittent packages are implementation of Croston’s method and the SBA

available. These were used to generate the forecasts for these methods. The forecast
were generated h steps ahead, without an adjustment to the measurement inbetween.

IHFC and Intermittent Integrated Hierarchical Forecasting (IIHFC) The IHFC and
IIHFC were implemented according to the theory in 3.2.1, the utilised code is appended in
A.3.1. Starting with the given parameters the function then creates the system matrices.
In addition a function which provides the different methods for modelling the adi is
added.

3.2.5. Forecast Performance Measure

To measure the performance of different forecast algorithms several measures are avail-
able. Some statistical measurements were presented in 2.1.4 and the CPIused by MSF-
OCA is described in 2.1.4.
Following Van West (7/5/2016), a work which was build on similar data, the following

measurements to asses the forecast performance are used. sMape, sMpe, TS, and CPI.
SMape is used as MSF has a good and rich experience with this measure and their data,
therefore this measure enables MSF to compare the results from this work with other
works based on their data. A similar thing is to say for the CPI which is an intern
used measure for MSF. The TS is a important information to show if the the forecast
algorithm has the tendency to over or underestimate. SMpe is included to provide a
better comparison of the forecasting performance with other publications.
The measures ME, MAE, RMSE and Mean Absolute Squared Error (MASE) are ex-

cluded as forecast are compared on time series with different scales, and hence relative
measurements are more comparable.

37



First forecasts were generated with the IHFC and the different version of the IIHFC
algorithm. The forecast performance for these algorithm was then evaluated with the
different measures chosen in 3.2.5. The IHFC algorithm is used as base line to compare
the results of the different version of the IIHFC. Table C.1 presents the average forecast
performance including all hierarchical levels when random parameter starts were used
in the optimisation step, table C.2 presents the results for the non-random starts. In
addition for each set the average cv2 and adi are included.

It can be seen that the random start performs much worse than the non-random starts.
It can be seen that not always one method performs better, but the result is dependent
on the data set.
Table C.3 compares the results of the best IIHFC version with the results of the ARIMA

forecast, the ETS forecast, Croston’s method, and with the results of the SBA forecast.

4. Conclusion and Further Research

4.1. Conclusion

Dependencies between different groups Including dependencies between different prod-
ucts by adding their aggregated and normalised time series did not provide any improve-
ment. The resulting forecast were subject to strong outliers. Therefore this approach is
not recommended.

IHFC and IIHFC The IIHFC performed similar to the IHFC, the small differences may
stem from the non-optimal parameter estimation and the number of test cases is not sig-
nificant. The IIHFC offers a working adaptation of Croston’s method, and the SBA, to
the more flexible BSM used in IHFC. In addition it combines the hierarchical integration
with the specific methods for intermittent demand. The same number of parameters like
in the IHFC must be estimated to model the demand size, but the number of measure-
ments is decreased as the demand is intermittent and zero consumptions are excluded
from the estimation process. In particular for time series with few measurements, or and
high adi, this results in a difficult parameter estimation.

IIHFC and simplistic methods In comparison with the naive forecast, the ARIMA,
the ETS, Croston’s method, and the SBA, the IIHFC performed similar. The IIHFC
offers the possibility to include external factors, and know properties of the time series,
the disadvantages are the required resources. The IIHFC requires a more advanced
understanding of time series model to create the BSM, understanding of the underlying

38



process, and in particular a large amount of computational power for the parameter
estimation.

Practical application Application in practice depends on the available time series data.
If only short time series are available, or the adi is large compared to the length of the
time series, then the more simplistic forecasting methods have the advantage, as the
number of parameters is much lower. In addition the simplistic forecasting methods are
preferable if computational resources are limited.
If computational resources are available and the data basis is large enough, then the

IIHFC can improve the performance, as product dependencies are included.

4.2. Further Research

Improved parameter selection The main disadvantage, and also challenge in this work,
is the increased number of parameters in the IIHFC. Using the more simplistic meth-
ods to estimate the initial parameters and type of BSM could save on computational
resources. In addition the time series classifications schemas 2.1.2 can be used as auto-
mated framework to choose the method in the IIHFC.

Longer time series The current case study does not provide enough evidence for the
improvement in the IIHFC. Depending on the number of products in the data set, the
length of the time series, and the adi the number of parameters in the IIHFC is higher
then the available measurements. Assessing the performance of the IIHFC on a common
data set used for intermittent demand could provide further insights.

Product dependencies in the adi The different methods used to model the adi had
in common that product dependencies were not considered. Including the dependencies
between products not only when estimating the parameters for the demand size model,
but also when forecasting the adi could improve the algorithm.

39



Bibliography

Box, G. E. P., Jenkins, G. M. & Reinsel, G. C. (2008), Time series analysis: Forecasting
and control / George E.P. Box, Gwilym M. Jenkins, Gregory C. Reinsel, Wiley series
in probability and statistics, 4th ed. edn, Wiley, Oxford.
URL: http: // www. loc. gov/ catdir/ enhancements/ fy0805/ 2007044569-d.

html

Box G. E. P. & TIAO, G. C. (1977), ‘A canonical analysis of multiple time series’,
Biometrika 64(2), 355–365.

Brockwell, P. J. & Davis, R. A. (2016), Introduction to Time Series and Forecasting,
Springer International Publishing, Cham.

Brown, R. G. (1959), Statistical forecasting for inventory control Robert G. Brown,
McGraw-Hill, New York [u.a.].

BROYDEN, C. G. (1970), ‘The Convergence of a Class of Double-rank Minimization
Algorithms 1. General Considerations’, IMA Journal of Applied Mathematics 6(1), 76–
90.

Byrd, R. H., Lu, P., Nocedal, J. & Zhu, C. (1995), ‘A Limited Memory Algo-
rithm for Bound Constrained Optimization’, SIAM Journal on Scientific Computing
16(5), 1190–1208.

Commandeur, J. J. F. & Koopman, S. J. (2007), An introduction to state space time
series analysis, Practical econometrics series, Oxford University Press, Oxford.

Croston, J. D. (1972), ‘Forecasting and Stock Control for Intermittent Demands’, Journal
of the Operational Research Society 23(3), 289–303.

Dangerfield, B. J. & Morris, J. S. (1992), ‘Top-down or bottom-up: Aggregate versus
disaggregate extrapolations’, International Journal of Forecasting 8(2), 233–241.

Durbin, J. & Koopman, S. J. (2001), Time series analysis by state space methods, Vol. 24
of Oxford statistical science series, Oxford University Press, Oxford.

Fletcher, R. (1970), ‘A new approach to variable metric algorithms’, The Computer
Journal 13(3), 317–322.

Gardner, E. S. & Mckenzie, E. (1985), ‘Forecasting Trends in Time Series’, Management
Science 31(10), 1237–1246.

40

http://www.loc.gov/catdir/enhancements/fy0805/2007044569-d.html
http://www.loc.gov/catdir/enhancements/fy0805/2007044569-d.html


Gentle, J. E. (2009), Computational statistics, Statistics and computing, Springer, Dor-
drecht and London.

Goldfarb, D. (1970), ‘A family of variable-metric methods derived by variational means’,
Mathematics of Computation 24(109), 23–26.

Gross, C. W. & Sohl, J. E. (1990), ‘Disaggregation methods to expedite product line
forecasting’, Journal of Forecasting 9(3), 233–254.

Harvey, A. (1989), Forecasting, structural time series models and the Kalman Filter,
Cambridge University Press.

Hyndman, R. J., Ahmed, R. A., Athanasopoulos, G. & Shang, H. L. (2011), ‘Optimal
combination forecasts for hierarchical time series’, Computational Statistics & Data
Analysis 55(9), 2579–2589.

Hyndman, R. J. & Koehler, A. B. (2006), ‘Another look at measures of forecast accuracy’,
International Journal of Forecasting 22(4), 679–688.

Hyndman, R. J., Koehler, A. B., Snyder, R. D. & Grose, S. (2002), ‘A state space frame-
work for automatic forecasting using exponential smoothing methods’, International
Journal of Forecasting 18(3), 439–454.

Johnson, N. L., Kemp, A. W. & Kotz, S. (2005), Univariate discrete distributions, Wiley
series in probability and statistics, 3rd ed. edn, Wiley-Interscience, Hoboken, N.J.

Johnston, F. R., Boylan, J. E. & Shale, E. A. (2003), ‘An examination of the size of orders
from customers, their characterisation and the implications for inventory control of slow
moving items’, Journal of the Operational Research Society 54(8), 833–837.

Kahn, K. B. (1998), ‘Revisiting Top-Down Versus Bottom-Up Forecasting’, Journal of
Business Forecasting Methods & Systems 17(2), 14–19.

Kalman, R. E. (1960), ‘A New Approach to Linear Filtering and Prediction Problems’,
Journal of Basic Engineering 82(1), 35.

Katsnelson, J. & Kotz, S. (1957), ‘On the upper limits of some measures of variability’,
Archiv für Meteorologie, Geophysik und Bioklimatologie Serie B 8(1), 103–107.

Kostenko, A. V. & Hyndman, R. J. (2006), ‘A note on the categorization of demand
patterns’, Journal of the Operational Research Society 57(10), 1256–1257.

41



Kourentzes, N. (2014), ‘Intermittent demand forecasting package for R’.
URL: http: // kourentzes. com/ forecasting/ 2014/ 06/ 23/

intermittent-demand-forecasting-package-for-r/

Lukas Rost (n.d.).

Ord, J. K., Koehler, A. B. & Snyder, R. D. (1997), ‘Estimation and Prediction for a
Class of Dynamic Nonlinear Statistical Models’, Journal of the American Statistical
Association 92(440), 1621.

Pennings, C. L. & Van Dalen, J. (2017), ‘Integrated hierarchical forecasting’, European
Journal of Operational Research .

Petropoulos, F. & Kourentzes, N. (2015), ‘Forecast combinations for intermittent de-
mand’, Journal of the Operational Research Society 66(6), 914–924.

Shanno, D. F. (1970), ‘Conditioning of quasi-Newton methods for function minimization’,
Mathematics of Computation 24(111), 647–656.

Syntetos, A. A., Boylan, J. E. & Croston, J. D. (2005), ‘On the categorization of demand
patterns’, Journal of the Operational Research Society 56(5), 495–503.

Syntetos, A. & Boylan, J. (2001), ‘On the bias of intermittent demand estimates’, Inter-
national Journal of Production Economics 71(1-3), 457–466.

Trigg, D. W. (2017), ‘Monitoring a Forecasting System’, Journal of the Operational
Research Society 15(3), 271–274.

Tu, W. & Mayne, R. W. (2002), ‘Studies of multi-start clustering for global optimization’,
International Journal for Numerical Methods in Engineering 53(9), 2239–2252.

Van West, K. (7/5/2016), The impact of time series clustering on forecast performance:
a case study of Médecins Sans Frontières, PhD thesis, Erasmus University Rotterdam.

Widiarta, H., Viswanathan, S. & Piplani, R. (2009), ‘Forecasting aggregate demand:
An analytical evaluation of top-down versus bottom-up forecasting in a production
planning framework’, International Journal of Production Economics 118(1), 87–94.

42

http://kourentzes.com/forecasting/2014/06/23/intermittent-demand-forecasting-package-for-r/
http://kourentzes.com/forecasting/2014/06/23/intermittent-demand-forecasting-package-for-r/


List of Abbreviations

acf auto-correlation function. 4

ARIMA Auto-Regressive Integrated Mean Average. 26–29, 32–34

CPI Consumption Performance Index. 8, 26, 32, 33

Crostons method Crostons method. 5

ETS Exponential Smoothing State Space Model. 26–29, 32–34

IHFC Integrated Hierarchical Forecasting. 26–29, 32–34

IIHFC Intermittent Integrated Hierarchical Forecasting. 2, 26–29, 32–34

JFC Judgemental Forecast. 26, 32, 33

KH Kostenko-Hyndman. 2, 5, 6

KHa Kostenko-Hyndman approximate. 2, 5, 6

MAE Mean Absolute Error. 6, 7, 26

Mape Mean absolute percentage error. 7

MASE Mean Absolute Squared Error. 26

ME Mean Error. 6, 7, 26

Mpe Mean percentage error. 7

MSF Médecins Sans Frontières. 8, 9, 26, 28

MSF-OCA Operational Center of Amsterdam of Médecins Sans Frontières. 2, 9–12,
14–16, 26, 28, 30

MSF-SO Similar Organisation of Médecins Sans Frontières. 2, 9–12, 15, 16, 30

PK Petropoulos-Kourentzes. 2, 5, 6

PKa Petropoulos-Kourentzes approximate. 2, 5, 6

RMSE Root Squared Error. 6, 7, 26

SBA Syntetos-Boylan approximation. 5

43



SBC Syntetos-Boylan-Croston. 2, 5

SES Single Exponential Smoothing. 5

SKU Stock Keeping Unit. 10

sMape symmetric Mean absolute percentage error. 7, 26, 32, 33

sMpe symmetric Mean percentage error. 7, 26, 32, 33

SQL Structured Query Language, database language. 9

TS Tracking Signal. 8, 26, 32, 33

Appendices

A. R Code

A.1. Execution Code

1 r e qu i r e ( data . t ab l e )
###########################################################################

3 # Descr ibe s the proce s s app l i ed
###########################################################################

5

###########################################################################
7 # Loading the r equ i r ed f unc t i on s

source ( " . /Appendix/ f indStartEndBreak .R" )
9 source ( " . /Appendix/ s e l e c tT imeSe r i e s .R" )

source ( " . /Appendix/ gene ra t eSe t s .R" )
11

source ( " . /Appendix/createSSTModel .R" )
13 source ( " . /Appendix/ c a l l . f k f .R" )

source ( " . /Appendix/runOptim .R" )
15 source ( " . /Appendix/ createParameters .R" )

source ( " . /Appendix/ f o r e c a s t s .R" )
17 source ( " . /Appendix/measures .R" )

19 source ( " . /Appendix/ createTablesAndForecasts .R" )
###########################################################################

21 # Loading the o r i g i n a l time s e r i e s t ab l e
load ( " . . /Data/Appendix/ t imeSer i e sTab l e . RData" )

23

44



###########################################################################
25 # Id en t i f y i n g miss ing va lue s

c l eanedTimeSer i e s <− f indStartEndBreak ( t imeSer i e sTab le )
27

# Se l e c t a s u i t a b l e range o f time s e r i e s
29 s e l e c t edT imeSe r i e s <− s e l e c tT imeSe r i e s ( c l eanedTimeSer i e s )

31 # Create data s e t s o f time s e r i e s
s e t L i s t <− gene ra t eSe t s ( s e l e c t edT imeSe r i e s )

33

# Create add i t i o na l p r op e r t i e s f o r each s e t
35 f u l l S e t L i s t <− l app ly ( s e tL i s t , g ene ra t eSe tPrope r t i e s , t imeSer i e sTab le =

se l e c t edT imeSe r i e s )

37 # Names o f opt imised se t s , only a few s e t were opt imised
optimSetNames <− c ( "ABAAJBAAIFA" , "ADAARAAAHAA" , "ADAAAFAAHAA" , "

AEAAYIAAZDA" )
39

# Se l e c t the se s e t s from the l i s t
41 s e tSubLi s t <− f u l l S e t L i s t [ sapply ( f u l l S e t L i s t , f unc t i on ( s e t ) { s e t $name}) %

in% optimSetNames ]

43 # Run opt im i sa t i on with s t a t i c i n i t i a l parameters
o p t im i s e dS t a t i c I n i t S e tL i s t <− l app ly ( setSubList , f unc t i on ( s e t ) {

45 s e t <− c r ea teSta t i cParamete r ( s e t )
s e t <− runOptim ( s e t )

47 re turn ( s e t )
})

49 # The r e s u l t s are a l s o a v a i l a b l e from
load ( " . . /Data/Appendix/ op t im i s e dS t a t i c I n i t S e tL i s t . RData" )

51

# Run opt im i sa t i on with random i n i t i a l parameters
53 opt imisedRandomInitSetList <− l app ly ( setSubList , f unc t i on ( s e t ) {

s e t <− createRandomParameter ( set , 200)
55 s e t <− runOptim ( s e t )

re turn ( s e t )
57 })

# The r e s u l t s are a l s o a v a i l a b l e from
59 load ( " . . /Data/Appendix/ opt imisedRandomInitSetList . RData" )

61 ###########################################################################
# Fi r s t Test

63 # Compare f o r e c a s t performance f o r d i f f e r e n t i n i t a l i s i a t i o n methods

45



s tat i c In i t IHFCTable <− do . c a l l ( rbind , l app ly ( op t im i s e dS t a t i c I n i t S e tL i s t ,
createIHFCTableEntry ) )

65 randomInitIHFCTable <− do . c a l l ( rbind , l app ly ( optimisedRandomInitSetList ,
createIHFCTableEntry ) )

# The conc lu s i on here i s that the s t a t i c i n i t performs much be t t e r
67 ###########################################################################

69 ###########################################################################
# Second Test

71 # Compare f o r e c a s t performance o f the IHFC−Group with s imp le r methods
s tat i c In i tARTable <− rbind (

73 createARTableEntry ( o p t im i s e dS t a t i c I n i t S e tL i s t [ [ 1 ] ] , i i h f c_method = "NO" ) ,
createARTableEntry ( o p t im i s e dS t a t i c I n i t S e tL i s t [ [ 2 ] ] , i i h f c_method = "

STATIC" ) ,
75 createARTableEntry ( o p t im i s e dS t a t i c I n i t S e tL i s t [ [ 3 ] ] , i i h f c_method = "CRO" )

,
createARTableEntry ( o p t im i s e dS t a t i c I n i t S e tL i s t [ [ 4 ] ] , i i h f c_method = "SBA" )

77 )
###########################################################################

79

###########################################################################
81 # Third Test

# Try to inc lude product dependenc ies
83 staticInitIHFCTableDEP <− do . c a l l ( rbind , l app ly ( op t im i s e dS t a t i c I n i t S e tL i s t ,

createIHFCTableEntry , dep = TRUE) )
###########################################################################

Listing 1: Executed Code

A.2. Data Cleaning and Set Generation

A.2.1. Identifying Missing Values

r e qu i r e ( zoo )
2 r e qu i r e ( data . t ab l e )

4 # This i s nece s sa ry to c o r r e c t l y i d e n t i f y the month names
Sys . s e t l o c a l e ( "LC_TIME" , "C" )

6

###########################################################################
8 # cleanedTimeSer iesTable <− f indStartEndBreak ( t imeSer i e sTab le )

#
10 # The func t i on i d e n t i f i e s miss ing va lue s in a given time s e r i e s t ab l e

###########################################################################

46



12 f indStartEndBreak <− f unc t i on ( t imeSer i e sTab le ) {
# Function to i d e n t i f y a block , which i n c l ud e s inc ludeCo l l , spanning a l l

time s e r i e s in dataTable where va lue s are e i t h e r miss ing or −I n f
14 getMaxBlock <− f unc t i on ( dataTable , inc ludeCo l ) {

# Get the i n d i c e s o f the columns f u l l f i l l i n g the c i r t e r i a
16 matchedCols <− which ( sapply ( dataTable , f unc t i on ( c o l ) {

re turn ( a l l ( i s . na ( c o l ) | c o l == −I n f ) )
18 }) )

# Check i f the r equ i r ed column f u l l f i l l s the c r i t e r i a
20 i f ( inc ludeCo l %in% matchedCols ) {

# Get a l l columns l e f t ( and r i gh t ) from inc ludeCol , which f u l l f i l l
the c r i t e r i a

22 l e f t C o l s <− matchedCols [ matchedCols <= inc ludeCo l ]
r i gh tCo l s <− matchedCols [ matchedCols >= inc ludeCo l ]

24

# Now s e l e c t i n g the l a r g e s t cont iuous block on the l e f t ( r i g h t )
26 le ftNACols <− l e f t C o l s [max( which ( d i f f ( l e f t C o l s ) != 1) + 1 , 1) : l ength (

l e f t C o l s ) ]
rightNACols <− r i gh tCo l s [ 1 : ( min ( which ( d i f f ( r i gh tCo l s ) != 1) , l ength (

r i gh tCo l s ) ) ) ]
28 # These b locks are combined , dup l i ca t ed column i nd i c e s are removed

# and the i n d i c e s are returned
30 re turn ( unique ( c ( leftNACols , rightNACols ) ) )

32 } e l s e {
# I f inc ludeCo l does not f u l f i l l the c r i t e r i a , no column index i s
returned

34 re turn (NULL)
}

36 }

38 # Function to i d e n t i f y opening and c l o s i n g departments in the consumption
o f a s i n g l e p r o j e c t

f indDepartmentStartEnd <− f unc t i on ( p r o j e c t ) {
40 # Id en t i f y the f i r s t column index

f i r s t C o l <− f i r s t ( which ( ! i s . na ( as . yearmon ( colnames ( p r o j e c t ) ) ) ) )
42 # Extract the department codes pre sent in t h i s p r o j e c t

depCode <− l e v e l s ( d r op l e v e l s ( p r o j e c t $Department ) )
44 # Get L i s t o f the time s e r i e s by department

depList <− l app ly ( depCode , func t i on ( dep ) { p r o j e c t [ p r o j e c t $Department
== dep , ] } )

46

# Function to change the columns f o r time s e r i e s consumption in each
department

47



48 changeDepBlock <− f unc t i on ( dep ) {
# Se l e c t s columns which f u l l f i l l the requirement and are at the

beg innging o f the time s e r i e s
50 s t a r tB lock <− getMaxBlock ( dep , f i r s t C o l )

# S e l e c t s columns at the end
52 endBlock <− getMaxBlock ( dep , dim( dep ) [ [ 2 ] ] )

# Changes the entry in the columns from NA to −I n f
54 i f ( l ength ( s ta r tB lock ) > 0) {

dep [ , s t a r tB lock ] <− −I n f
56 }

i f ( l ength ( endBlock ) > 0) {
58 dep [ , endBlock ] <− −I n f

}
60

# Return the changed time s e r i e s f o r t h i s department
62 re turn ( dep )

}
64

# Changes a l l departments in t h i s p r o j e c t
66 p r o j e c t <− r b i n d l i s t ( l app ly ( depList , changeDepBlock ) )

# Return the modi f i ed p r o j e c t
68 re turn ( p r o j e c t )

}
70

# Function to i d e n t i f y miss ing va lue s in a complete p r o j e c t
72 s e tPro j e c tCo l <− f unc t i on ( p r o j e c t ) {

# Se l e c t i n g a l l columns which f u l l f i l l the c r i t e r i a complete
74 NAColumns <− which ( sapply ( pro j e c t , f unc t i on ( c o l ) { a l l ( i s . na ( c o l ) | c o l

== −I n f ) }) )
# Set these columns to −I n f

76 p r o j e c t [ , NAColumns ] <− −I n f
# Return the modi f i ed p r o j e c t

78 re turn ( p r o j e c t )
}

80

# Create l i s t o f consumption time s e r i e s by p r o j e c t
82 p r o j e c t L i s t <− l app ly ( l e v e l s ( t imeSer i e sTab le $ Pro j e c t ) , f unc t i on ( arg ) {

re turn ( t imeSer i e sTab le [ t imeSer i e sTab l e $ Pro j e c t == arg , ] ) } )

84 # Modify each p r o j e c t to i d e n t i f y miss ing columns
p r o j e c t L i s t <− l app ly ( p r o j e c tL i s t , s e tPro j e c tCo l )

86

# Modify each p r o j e c t to i d e n t i f y the opening and c l o s i n g o f the
departments

48



88 p r o j e c t L i s t <− l app ly ( p r o j e c tL i s t , f indDepartmentStartEnd )

90 # Create a modi f i ed time s e r i e s t ab l e
c leanedTimeSer iesTable <− r b i n d l i s t ( p r o j e c t L i s t )

92

# Al l i d e n t i f i e d miss ing va lue s were s e t to −I n f
94 # Now se t a l l remaing NAs to 0 , and the −I n f to NA

cleanedTimeSer iesTable [ i s . na ( c leanedTimeSer iesTable ) ] <− 0
96 c leanedTimeSer iesTable [ c leanedTimeSer iesTable == −I n f ] <− NA

98 # Return the modi f i ed time s e r i e s Table
re turn ( c leanedTimeSer iesTable )

100 }

Listing 2: Code to detect missing Values

A.2.2. Time Period Selection

r e qu i r e ( data . t ab l e )
2

###########################################################################
4 # se l ec t edTimeSer i e sTab l e<− f indStartEndBreak ( t imeSer i e sTab le )

#
6 # The func t i on i d e n t i f i e s the best subset f o r t e s t i n g purposes

###########################################################################
8 s e l e c tT imeSe r i e s <− f unc t i on ( t imeSer i e sTab le ) {

# Count the number o f va lue s in each column
10 numOfValues <− apply ( t imeSer i e sTab l e [ , −c ( 1 : 6 ) , with = FALSE] , 2 ,

f unc t i on ( arg ) { sum( ! i s . na ( arg ) ) })
# Create an empty matrix to save the number o f s e r i e s f o r each s e l e c t i o n

o f months
12 numMatrix <− data . frame ( s t a r t = NA, end = NA, value = NA)

# For each s e l e c t i o n o f months , the l ength o f the time per iod , time the
number o f time s e r i e s without miss ing va lue s i s c a l c u l a t ed

14 f o r ( end in l ength ( numOfValues ) : 3 6 ) {
f o r ( s t a r t in 1 : ( end−35) ) {

16 numMatrix <− rbind (numMatrix , data . frame ( s t a r t = s ta r t , end = end ,
va lue = min ( numOfValues [ s t a r t : end ] ) ∗ ( end − s t a r t + 1) ) )
}

18 }
# Any entry where no value was c a l c u l a t e i s removed

20 numMatrix <− numMatrix [ ! i s . na ( numMatrix$ value ) , ]
# The optimal s e l e c t i o n o f months i s ex t rac t ed

49



22 range <− numMatrix [ numMatrix$ value == max(numMatrix$value , na . rm = TRUE) ,
1 : 2 ]

s t a r t <− range [ [ 1 ] ]
24 end <− range [ [ 2 ] ]

26 # The non s e l e c t e d months are removed
s e l e c t edT imeSe r i e s <− t imeSer i e sTab l e [ , c ( 1 : 6 , ( s t a r t : end ) + 6) , with =

FALSE]
28

# Time s e r i e s with miss ing va lue s in the remaining time per iod are
removed

30 s e l e c t edT imeSe r i e s <− s e l e c t edT imeSe r i e s [ apply ( s e l e c t edT imeSe r i e s [ , −c
( 1 : 6 ) , with = FALSE] , 1 , f unc t i on ( l i n e ) { ! any ( i s . na ( l i n e ) ) }) , ]

32 # Al l time s e r i e s with l e s s then two va lue s in the f i r s t two th i rd o f the
time are removed

s e l e c t edT imeSe r i e s <− s e l e c t edT imeSe r i e s [ apply ( s e l e c t edT imeSe r i e s [ , −c
( 1 : 6 ) , with = FALSE] , 1 , f unc t i on ( l i n e ) { sum( l i n e [ 1 : round (2 ∗ l ength (
l i n e ) / 3 , 0) ] != 0) > 2}) , ]

34

# Al l time s e r i e s with a var iance lower than 1/ (2 ∗n) are removed
36 var ianceVec <− apply ( s e l e c t edT imeSe r i e s [ , −c ( 1 : 6 ) , with = FALSE] , 1 , var )

s e l e c t edT imeSe r i e s <− s e l e c t edT imeSe r i e s [ var ianceVec > 1/ (2 ∗ (dim(
s e l e c t edT imeSe r i e s ) [ [ 2 ] ] − 6 ) ) , ]

38

# Remove non medical product groups
40 s e l e c t edT imeSe r i e s <− s e l e c t edT imeSe r i e s [ Group %in% c ( "A" , "D" ) , ]

42 # Return the s e l e c t e d time s e r i e s
re turn ( s e l e c t edT imeSe r i e s )

44 }

Listing 3: Selecting a specific time frame

A.2.3. Set Generation

r e qu i r e ( data . t ab l e )
2

###########################################################################
4 # s e tL i s t <− gene ra t eSe t s ( t imeSer i e sTab le )

#
6 # Generates s e t s f o r each products and removes s e t s

###########################################################################
8 gene ra t eSe t s <− f unc t i on ( t imeSer i e sTab l e ) {

50



# Remove l e v e l s l e f t from the prev ious s t ep s
10 t imeSer i e sTab l e <− d r op l e v e l s ( t imeSer i e sTab le )

# Create the l i s t o f s e t s by product
12 s e t L i s t <− s p l i t ( t imeSer i e sTable , by=c ( "Group" , "Family" , "Root" , "

Product" ) , f l a t t e n = TRUE, drop = TRUE)

14 # Remove a l l s e t s with l e s s then 5 time s e r i e s
nolowerFive <− sapply ( s e tL i s t , f unc t i on ( s e t ) { dim( s e t ) [ [ 1 ] ] } ) >= 5

16 s e t L i s t <− s e t L i s t [ nolowerFive ]

18 # Remove a l l s e t s with more than 15 time s e r i e s
noHigher15 <− sapply ( s e tL i s t , f unc t i on ( s e t ) { dim( s e t ) [ [ 1 ] ] } ) <= 15

20 s e t L i s t <− s e t L i s t [ noHigher15 ]

22 # Return a l i s t o f time s e r i e s t ab l e s
re turn ( s e t L i s t )

24 }

26 ###########################################################################
# f u l l S e t <− gene ra t eSe tPrope r t i e s ( set , t imeSer i e sTab le )

28 #
# Generates a more complex s e t from the s imple time s e r i e s , i n c l ud ing

30 # d i f f e r e n t data s e t s f o r d i f f e r e n t opt im i sa t i on approaches . each data s e t
# in c l ud e s e s t imat ion data and f o r e c a s t data f o r the base products and the

32 # h i e r a r c h i c a l s t ruc ture , the four data s e t s are
# − sim : simple , the o r i g i n a l s e t

34 # − na : z e r o s are s e t to NA
# − simDep : l i k e sim , but with aggregated consumption f o r product

36 # ca t e g o r i e s
# − naDep : l i k e na , but with aggregated consumption f o r product c a t e g o r i e s

38 ###########################################################################
gene ra t eSe tPrope r t i e s <− f unc t i on ( set , t imeSer i e sTab l e ) {

40 # Generates the product in fo rmat ion f o r the h i e r a r c h i c a l consumption
genera teFu l lProduct In fo <− f unc t i on ( baseProductInfo ) {

42 # Line f o r complete aggregat ion
topMatrix <− baseProductInfo [ , l app ly ( . SD, func t i on ( arg ) { re turn ( arg
[ [ 1 ] ] ) }) , by = . ( ) , . SDcol = c ( "Group" , "Family" , "Root" , "Product" ) ]

44 topMatrix [ , c ( "Department" , " Pro j e c t " ) ] <− NA
topMatrix <− topMatrix [ , c ( 6 : 5 , 1 : 4 ) ]

46 # Line f o r aggregat ion on p r o j e c t l e v e l
pro j ec tMatr ix <− baseProductInfo [ , l app ly ( . SD, func t i on ( arg ) { re turn ( arg
[ [ 1 ] ] ) }) , by = . ( Pro j e c t ) , . SDcol = c ( "Group" , "Family" , "Root" , "
Product" ) ]

48 pro j ec tMatr ix [ , "Department" ] <− NA

51



50 # Combined product in fo rmat ion
f u l l I n f oMa t r i x <− rbind ( topMatrix , pro jectMatr ix , baseProductInfo )

52

# Return the in fo rmat ion
54 re turn ( f u l l I n f oMa t r i x )

}
56

# Generates the des ign matrix S , accord ing to the in fo rmat ion about the
base products

58 generateDes ignS <− f unc t i on ( baseProductInfo ) {
# Summation matrix f o r complete aggregat ion

60 topMatrix <− matrix (1 , nco l = dim( baseProductInfo ) [ [ 1 ] ] , nrow = 1)

62 # Li s t o f p r o j e c t s in t h i s s e t
p r o j e c t L i s t <− unique ( baseProductInfo $ Pro j e c t )

64 # Aggregation matrix f o r p r o j e c t l e v e
pro j ec tMatr ix <− t ( sapply ( p r o j e c tL i s t , f unc t i on ( arg ) {

66 re turn ( as . numeric ( baseProductInfo $ Pro j e c t == arg ) )
} ) )

68 # Matrix to keep the o r i g i n a l time s e r i e s
bottomMatrix <− diag (1 , dim( baseProductInfo ) [ [ 1 ] ] )

70

# Create and return the des ing matrix
72 S <− rbind ( topMatrix , pro jectMatr ix , bottomMatrix )

re turn (S)
74 }

76 # Def ine va r i ab l e f o r the new s e t
newSet <− l i s t ( )

78 # Extract the base product in format ion , add i t to the s e t
newSet$ baseProductInfo <− s e t [ , c ( " Pro j e c t " , "Department" , "Group" , "

Family" , "Root" , "Product" ) ]
80 # Create the o r i g i n a l des ign matrix

S <− generateDes ignS ( newSet$ baseProductInfo )
82 # Create the des ign matrix i f aggregat ion on product c a t e g o r i e s was added

dep_S <− rbind ( cbind ( diag (1 , 3) , matrix (1 , nco l = dim(S) [ [ 2 ] ] , nrow = 3) )
,

84 cbind ( matrix (0 , nco l = 3 , nrow = (dim(S) [ [ 1 ] ] ) ) , S ) )
# Create the product in fo rmat ion in c l ud ing the h i e ra r chy

86 newSet$ f u l lP r odu c t I n f o <− genera teFu l lProduct In fo ( newSet$ baseProductInfo )
# Create a name f o r the set , choosen by the product

88 newSet$name <− paste0 ( l app ly ( s e t [ 1 , c ( "Group" , "Family" , "Root" , "Product
" ) ] , as . cha rac t e r ) , c o l l a p s e = "" )

52



90 # Extract the data part from the s e t
fu l lData <− s e t [ , −c ( 1 : 6 ) , with = FALSE]

92 # Get the complete consumption in the set , in order to s c a l e the
consumption aggregated over the product h i e ra r chy

setSum <− sum( fu l lData , na . rm = TRUE)
94 # Get the sum of consumption in each column , in order to remove t h i s from

the aggregated consumption
setColSum <− colSums ( fu l lData , na . rm = TRUE)

96 # Def ine the l ength o f the e s t imat ion data , and the l ength o f the
f o r e c a s t performance data

newSet$EstLength <− round (2 ∗dim( fu l lData ) [ [ 2 ] ] / 3 , 0)
98 newSet$FCLength <− dim( fu l lData ) [ [ 2 ] ] − newSet$EstLength

100 # Create the sim data s e t
newSet$sim <− l i s t ( )

102 newSet$sim$baseProductEstData <− as . matrix ( fu l lDa ta [ , 1 : newSet$EstLength
] )

newSet$sim$baseProductFCData <− as . matrix ( fu l lDa ta [ , ( newSet$EstLength+1)
: dim( fu l lData ) [ [ 2 ] ] ] )

104 newSet$sim$ fu l lEs tData <− S %∗% newSet$sim$baseProductEstData
newSet$sim$ fullFCData <− S %∗% newSet$sim$baseProductFCData

106 newSet$sim$S <− S

108 # Create the na data s e t
newSet$na <− l i s t ( )

110 newSet$na$baseProductEstData <− newSet$sim$baseProductEstData
newSet$na$baseProductEstData [ newSet$na$baseProductEstData == 0 ] <− NA

112 newSet$na$baseProductFCData <− newSet$sim$baseProductFCData
newSet$na$baseProductFCData [ newSet$na$baseProductFCData == 0 ] <− NA

114 newSet$na$ fu l lEs tData <− newSet$sim$ fu l lEs tData
newSet$na$ fu l lEs tData [ newSet$na$ fu l lEs tData == 0 ] <− NA

116 newSet$na$ fullFCData <− newSet$sim$ fullFCData
newSet$na$ fullFCData [ newSet$na$ fullFCData == 0 ]<− NA

118 newSet$na$S <− S

120 # Extract the Product category names
rootName <− as . cha rac t e r ( newSet$ baseProductInfo $Root [ [ 1 ] ] )

122 famName <− as . cha rac t e r ( newSet$ baseProductInfo $Family [ [ 1 ] ] )
grpName <− as . cha rac t e r ( newSet$ baseProductInfo $Group [ [ 1 ] ] )

124 proName <− as . cha rac t e r ( newSet$ baseProductInfo $Product [ [ 1 ] ] )

126 # Create aggregated consumption f o r the product h ierarchy , then s ca l ed to
the o v e r a l l consumption in the s e t

53



# For the Root category
128 r o o t I n f o <− data . frame ( Pro j e c t = NA, Department = NA, Group = grpName ,

Family = famName , Root = rootName , Product = NA)
ful lRootTS <− colSums ( t imeSer i e sTab l e [ Group == grpName & Family ==

famName & Root == rootName , −c ( 1 : 6 ) , with = FALSE] )
130 fu l lRootTS <− fu l lRootTS / sum( fullRootTS , na . rm = TRUE) ∗ setSum

132 dif fRootTS <− fu l lRootTS − setColSum

134 # For the Family category
famInfo <− data . frame ( Pro j e c t = NA, Department = NA, Group = grpName ,

Family = famName , Root = NA, Product = NA)
136 fullFamTS <− colSums ( t imeSer i e sTab l e [ Group == grpName & Family == famName

, −c ( 1 : 6 ) , with = FALSE] )
fullFamTS <− fullFamTS / sum( fullFamTS , na . rm = TRUE) ∗ setSum

138 diffFamTS <− fullFamTS − setColSum

140 # For the Group category
grpIn fo <− data . frame ( Pro j e c t = NA, Department = NA, Group = grpName ,

Family = NA, Root = NA, Product = NA)
142 ful lGrpTS <− colSums ( t imeSer i e sTab l e [ Group == grpName , −c ( 1 : 6 ) , with =

FALSE] )
ful lGrpTS <− ful lGrpTS / sum( fullGrpTS , na . rm = TRUE) ∗ setSum

144 diffGrpTS <− ful lGrpTS − setColSum

146 # The product i n f o i s then updated f o r the se s e t s
newSet$dep_baseProductInfo <− rbind ( grpInfo , famInfo , roo t In fo , s e t $

baseProductInfo )
148 newSet$dep_fu l lP r oduc t I n f o <− rbind ( grpInfo , famInfo , roo t In fo , s e t $

f u l lP r odu c t I n f o )

150 # Convienience
estLength <− newSet$EstLength

152 FCLength <− newSet$FCLength

154 # Create the simDep case
newSet$simDep <− l i s t ( )

156 newSet$simDep$baseProductEstData <− rbind ( diffGrpTS [ 1 : estLength ] ,
diffFamTS [ 1 : estLength ] , di f fRootTS [ 1 : estLength ] , newSet$sim$
baseProductEstData )

newSet$simDep$baseProductFCData <− rbind ( diffGrpTS [ estLength +1:FCLength ] ,
diffFamTS [ estLength +1:FCLength ] , di f fRootTS [ estLength +1:FCLength ] ,

newSet$sim$baseProductFCData )
158 newSet$simDep$ fu l lEs tData <− dep_S %∗% newSet$simDep$baseProductEstData

54



newSet$simDep$ fullFCData <− dep_S %∗% newSet$simDep$baseProductFCData
160 newSet$simDep$S <− dep_S

162 # Create the naDep case
newSet$naDep$baseProductEstData <− newSet$simDep$baseProductEstData

164 newSet$naDep$baseProductEstData [ newSet$naDep$baseProductEstData == 0 ] <−
NA

newSet$naDep$baseProductFCData <− newSet$simDep$baseProductFCData
166 newSet$naDep$baseProductFCData [ newSet$naDep$baseProductFCData == 0 ] <− NA

newSet$naDep$ fu l lEs tData <− newSet$simDep$ fu l lEs tData
168 newSet$naDep$ fu l lEs tData [ newSet$naDep$ fu l lEs tData == 0 ] <− NA

newSet$naDep$ fullFCData <− newSet$simDep$ fullFCData
170 newSet$naDep$ fullFCData [ newSet$naDep$ fullFCData == 0 ]<− NA

newSet$naDep$S <− dep_S
172

# Extract the column names f o r the two dat apart s
174 newSet$estNames <− colnames ( newSet$baseProductEstData )

newSet$FCNames <− colnames ( newSet$baseProductFCData )
176

# Function to re turn a con f i g depending on the choosen data s e t
178 newSet$Config <− f unc t i on ( data ) {

c on f i g <− l i s t ( )
180 c on f i g $ s <− 12

con f i g $n <− dim( data$baseProductEstData ) [ [ 1 ] ]
182 c on f i g $d <− dim( data$ fu l lEs tData ) [ [ 1 ] ]

c on f i g $m <− c on f i g $n ∗ ( c on f i g $ s + 2)
184 c on f i g $S <− data$S

return ( c on f i g )
186 }

188 # Return the new s e t
re turn ( newSet )

190 }

Listing 4: Creating Sets from the time series table

A.3. Tools to generate Forecasts

A.3.1. IIHFC Model Generation

1 r e qu i r e ( t s i n t e rm i t t e n t )
r e qu i r e ( Matrix )

3 r e qu i r e (expm)
###########################################################################

55



5 # SSTModel <− createSSTModel ( paraMeters , con f i g , yt )
#

7 # The func t i on c r ea t e a s t a t e space model with r e g r e s s i o n c o e f f i c i e n t in
# the trend component , and dampened t r i gonomet r i c model led s e a s ona l i t y ,

9 # and d i f f e r e n t methods to in c lude i n t e rm i t t en t demand
# The paraMeters i n c lude the f o l l ow i ng in fo rmat ion

11 # − a0 : The i n i t a l s t a t e vec to r
# − P0 : The var iance o f the a0 , d iagona l matrix

13 # − T: The t r a n s i t i o n matrix f o r the s t a t e vector , i n c l ud ing the
# r e g r e s s i o n c o e f f i c i e n t s

15 # − H: The modeling e r r o r matrix , non−d iagona l
# − Z : The measurement matrix , i n c l ud ing the s c a l i n g f a c t o r s f o r

17 # sea sona l e f f e c t s
# − G: The measurement e r r o r matrix , d iagona l

19 # The con f i g i n c l ud e s in fo rmat ion c rea ted by the Config func t i on o f the
# set s , t h i s i n c l ud e s

21 # − n : The number o f base products
# − d : The number o f products i n c l ud ing the h i e ra r chy

23 # − m: The length o f the s t a t e vec to r a_t , here n ∗ ( s+ 2)
# − s : The l ength o f one season , here 12

25 # − S : The des ign matrix f o r the h i e ra r chy
# The data s e t yt i n c l ud e s the consumption o f the f u l l products , i t i s used

27 # to implement the d i f f e r e n t methods to model i n t e rm i t t en t demad
###########################################################################

29

createSSTModel <− f unc t i on ( paraMeters , con f i g , yt ) {
31 # Function to c r e a t e the system matr i ce s

c r e a t e . cov <− f unc t i on ( paraMeters , check = "" ) {
33 # The f i r s t part o f paraMeters are the standard dev ia t i ons , the second

part i s the lower t r i a n gu l a r part o f the c o r r e l a t i o n matrix , column by
column
# Get the dimension

35 n <− s q r t (2 ∗ l ength ( paraMeters ) + 1/ 4) − 1/2
i f (n != round (n , 0) ) {

37 warning ( "Number o f paraMeters f o r the covar iance matrix i s wrong (
c r e a t e . cov ) . " )

re turn (−1)
39 }

41 cor <− matrix (0 , nco l = n , nrow = n)
cor [ lower . t r i ( cor , d iag = FALSE) ] <− paraMeters [ n + 1 : ( n∗ (n−1)/ 2) ]

43 cor <− cor + diag (1 , n) + t ( cor )
D <− diag ( paraMeters [ 1 : n ] )

45 # Check i f the r e s u l t i s s i n gu l a r

56



i f ( check != "" ) {
47 i f ( round ( det ( cor ) , 10) == 0) {

warning ( " S ingu la r Covariance Matrix : " , check )
49 }

}
51 re turn (D %∗% cor %∗% D)

}
53 c r e a t e .T <− f unc t i on ( paraMeters ) {

i f ( l ength ( paraMeters ) != con f i g $n) {
55 warning ( "Wrong number o f paraMeters in c r e a t e .T" )

}
57 i f ( c on f i g $ s /2 != round ( c on f i g $ s / 2 ,0) ) {

warning ( " Sea sona l i t y i s not even , reimplement . . . " )
59 }

U <− rbind (
61 cbind ( diag ( cos ( ( 1 : ( c on f i g $ s / 2) ) ∗ 2 ∗ pi / c on f i g $ s ) ) , d iag ( s i n

( ( 1 : ( c on f i g $ s / 2) ) ∗ 2 ∗ pi / c on f i g $ s ) ) ) ,
cbind ( diag(− s i n ( ( 1 : ( c on f i g $ s / 2) ) ∗ 2 ∗ pi / c on f i g $ s ) ) , d iag ( cos

( ( 1 : ( c on f i g $ s / 2) ) ∗ 2 ∗ pi / c on f i g $ s ) ) )
63 )

# F i r s t part o f T
65 T_1 <− rbind (

cbind ( diag ( paraMeters ) , d iag (1 , c on f i g $n) ) ,
67 cbind ( matrix (0 , nco l = con f i g $n , nrow = con f i g $n) , d iag (1 , c on f i g $n) )

)
69 # Create T complete

T_ <− bdiag (T_1 , diag (1 , c on f i g $n) %x% U)
71 re turn ( array (T_, dim = c ( c on f i g $m, c on f i g $m, 1) ) )

}
73 c r e a t e .HH <− f unc t i on ( paraMeters ) {

# HH i s HH’ as s p e c i f i e d in the FKF package
75 i f ( l ength ( paraMeters ) != con f i g $n ∗ ( c on f i g $n + 1) / 2 + 2) {

warning ( "Wrong number o f paraMeters in c r e a t e .HH" )
77 }

# Create the f i r s t and second part o f H
79 H_2 <− rbind ( cbind ( diag (1 , c on f i g $n) , d iag (1 , c on f i g $n) , matrix (0 ,

nrow = con f i g $n , nco l = con f i g $ s ∗ c on f i g $n) ) ,
cbind ( matrix (0 , nrow = con f i g $n , nco l = con f i g $n) , d iag

(1 , c on f i g $n) , matrix (0 , nrow = con f i g $n , nco l = con f i g $ s ∗ c on f i g $n) ) ,
81 cbind ( matrix (0 , nrow = con f i g $ s ∗ c on f i g $n , nco l = 2 ∗

c on f i g $n) , d iag (1 , c on f i g $ s ∗ c on f i g $n) ) )
# Inc lude th j c e covar iane matrix

83 HH <− H_2 %∗% bdiag ( c r e a t e . cov ( paraMeters [ 1 : ( c on f i g $n∗ ( c on f i g $n+1)/ 2) ] ,
check = "HHT" ) , paraMeters [ [ c on f i g $n∗ ( c on f i g $n+1)/2 + 1 ] ] ∗diag (1 ,

57



c on f i g $n) , paraMeters [ [ c on f i g $n∗ ( c on f i g $n+1)/ 2+2] ] ∗diag (1 , c on f i g $ s ∗
c on f i g $n) ) %∗% t (H_2)
return ( array (HH, dim = c ( c on f i g $m, c on f i g $m, 1) ) )

85 }
c r e a t e . Z_2 <− f unc t i on ( paraMeters ) {

87 i f ( l ength ( paraMeters ) != con f i g $n) {
warning ( "Wrong number o f paraMeters in c r e a t e . Z_2" )

89 }
Z_2 <− cbind ( diag (1 , c on f i g $n) , matrix (0 , nco l = con f i g $n , nrow =
con f i g $n) , d iag ( paraMeters ) %x% t ( c ( rep (1 , c on f i g $ s / 2) , rep (0 , c on f i g $ s
/ 2) ) ) )

91

re turn (Z_2)
93 }

c r e a t e .GG <− f unc t i on ( paraMeters ) {
95 # Measurement e r r o r s are unco r r e l a t ed t h e r e f o r e GG i s a d iagona l matrix

d <− l ength ( paraMeters )
97 re turn ( array ( diag ( paraMeters ) , dim = c (d , d , 1) ) )

}
99

# For conv i en i ence
101 d <− c on f i g $d

n <− c on f i g $n
103 m <− c on f i g $m

# Check i f the number o f paraMeters matches the r equ i r ed c on f i g
105 i f ( l ength ( paraMeters ) != (2 ∗m+3∗n+n∗ (n−1)/2+2+d) ) {

warning ( "Wrong number o f paraMeters in c r e a t e . model" )
107 re turn (−1)

}
109 # I n i t a l i z e the model

model <− l i s t ( )
111 # Create the model matr i ce s and vec to r s from the i n i t a l parameter vec to r

# The i n i t a l s t a t e vector , and i t ’ s i n i t i a l var i ance ( d e s r i b i n g the
unce r ta in ty )

113 model$a0 <− paraMeters [ 1 :m]
model$P0 <− diag ( paraMeters [m + 1 :m] )

115

# Create the t r a n s i t i o n matrix f o r the s t a t e vector ,
117 model$Tt <− c r e a t e .T( paraMeters [ 2 ∗m + 1 : n ] )

# the matrix f o r the modeling er ror ,
119 model$HHt <− c r e a t e .HH( paraMeters [ 2 ∗m+n + 1 : ( n+n∗ (n−1)/2 + 2) ] )

# the second part o f the measurement matrix , and
121 model$Z_2 <− c r e a t e . Z_2( paraMeters [ ( 2 ∗m+2∗n+n∗ (n−1)/2+2) + 1 : n ] )

# the matrix f o r the measurement e r r o r

58



123 model$GGt <− c r e a t e .GG( paraMeters [ ( 2 ∗m+3∗n+n∗ (n−1)/2+2) + 1 : d ] )

125 # The cur rent es t imate o f the s t a t e vec to r i n c l ud ing the unce r ta in ty
model$ at <− model$a0

127 model$Pt <− model$P0

129 # In add i t i on the c on f i g v a r i a b l e s are added to the model
model$S <− c on f i g $S

131 model$d <− c on f i g $d
model$ s <− c on f i g $ s

133 model$n <− c on f i g $n
model$m <− c on f i g $m

135

# I f data was provided d i f f e r e n t i n t t e rm i t t e n t models can be c rea ted from
th i s

137 i f ( ! mis s ing ( yt ) && ! i s . nu l l ( yt ) ) {
# s e l e c t the consumption f o r the base products

139 xt <− yt [ ( model$d−model$n)+1:model$n , ]
# Condi t iona l p r o b a b i l i t i e s f o r demand occurences

141 w_0 <− apply ( xt , 1 , f unc t i on ( arg ) {
# Se l e c t a l l which f u l l f i l l the cond i t i on

143 newArg <− arg [ s h i f t ( arg , 1 ) == 0 ]
# Calcu la te the p r obab i l i t y f o r a non−zero demand

145 re turn (sum(newArg != 0 , na . rm = TRUE) / ( l ength (newArg ) − 1) )
})

147 w_1 <− apply ( xt , 1 , f unc t i on ( arg ) {
# Se l e c t a l l which f u l l f i l l the cond i t i on

149 newArg <− arg [ s h i f t ( arg , 1 ) != 0 ]
# Calcu la te the p r obab i l i t y f o r a non−zero demand

151 re turn (sum(newArg != 0 , na . rm = TRUE) / ( l ength (newArg ) − 1) )
})

153

# I f data i s given , c a l c u l a t e the average in t e r−demand i n t e r v a l f o r the
base products

155 model$p <− apply ( xt , 1 , f unc t i on ( arg ) { re turn ( i d c l a s s ( arg , type = "SBC
" , outp lo t = FALSE) $p) })

157 # Create ve c t o r s c r e a t i n g the d iagona l e n t r i e s o f X f o r a l l methods
# For a s t a t i c i n t e r demand i n t e r v a l

159 model$XVal_Stat <− 1/model$p
# With cond i t i o na l p r o b a b i l i t i e s

161 model$XVal_Stat2 <− sapply ( 1 : model$n , func t i on ( index ) {
# For each time s e r i e s s e l e c t the r i g h t p r o b a b i l i t i e s

163 W0 <− w_0 [ index ]

59



W1 <− w_1 [ index ]
165 # Se l e c t the l a s t value , i f non i s given ,

l a s tVa l <− xt [ index , dim( xt ) [ [ 2 ] ] ]
167 i f ( i s . na ( l a s tVa l ) ) {

l a s tVa l <− 0
169 }

# Generate 1000 random draws
171 xsVal <− rep (NA, 1000)

f o r ( i in 1 :1000) {
173 i f ( l a s tVa l == 0) {

xsVal [ i ] <− rbinom (1 , 1 , W0)
175 l a s tVa l <− xsVal [ i ]

} e l s e {
177 xsVal [ i ] <− rbinom (1 , 1 , W1)

l a s tVa l <− xsVal [ i ]
179 }

}
181 # Return the mean o f the random draws

return (mean( xsVal , na . rm=T) )
183 })

185 # Applying Croston ’ s method and ex t r a c t i n g the f o r e c a s t e d in t e r−demand
i n t e r a l l
xt [ i s . na ( xt ) ] <− 0

187 model$XVal_Cro <− apply ( xt , 1 , f unc t i on ( baseTS ) { return (1 / c r o s t ( baseTS
, outp lo t = FALSE) $components$c . out [ 1 , " I n t e r v a l " ] ) })
# Applying the SBA

189 model$XVal_SBA <− apply ( xt , 1 , f unc t i on ( baseTS ) { return (1 / c r o s t ( baseTS
, type = "SBA" , outp lo t = FALSE) $components$c . out [ 1 , " I n t e r v a l " ] ) })

191 # Create the func t i on
model$Xt <− f unc t i on ( pmodel = "STATIC" ) {

193 i f ( pmodel == "STATIC" ) {
xVal <− model$XVal_Stat

195 } e l s e i f ( pmodel == "STATIC2" ) {
xVal <− model$XVal_Stat2

197 } e l s e i f ( pmodel == "CRO" ) {
xVal <− model$XVal_Cro

199 } e l s e i f ( pmodel == "SBA" ) {
xVal <− model$XVal_SBA

201 } e l s e {
warning ( "Model i s not know , choose non−i n t e rm i t t en t model" )

203 xVal <− rep (1 , model$n)
}

60



205 Xt <− diag ( xVal )

207 re turn (Xt)
}

209 } e l s e {
# i f no data was provided , X i s s e t to the i d e n t i t y matrix f o r a l l
models ,

211 model$Xt <− f unc t i on (method ) {
i f ( miss ing (method ) ) {

213 # A warning i s added i f the method was s p e c i f i e d , but no data was
g iven

warning ( "No data f o r i n t e rm i t t en t model was g iven " )
215 }

return ( diag (1 , model$n) )
217 }

}
219

# Return the model
221 re turn ( model )

}

Listing 5: Create State Space model

A.3.2. Applying the Kalman Filter

r e qu i r e (FKF)
2 ###########################################################################

# updatedModel <− c a l l . f k f (model , yt )
4 #

# Function app l i e s the Kalman f i l t e r to update the s t a t e vector , re turned
6 # i s the model with updated s t a t e vec to r at , s t a t e vec to r covar iance Pt ,

# and updated log−l i k e l i h o o d
8 ###########################################################################

c a l l . f k f <− f unc t i on (model , yt ) {
10 # Apply the Kalman f i l t e r

capture . output ( r e s u l t <− f k f ( a0 = model$at , P0 = model$Pt , dt = matrix (0 ,
nrow = model$m, nco l = 1) , c t = matrix (0 , nrow = model$d , nco l = 1) ,

Tt = model$Tt , Zt = array ( model$S %∗% model$Z_2 , dim = c ( model$d , model
$m, 1) ) , HHt = model$HHt , GGt = model$GGt, yt = yt ) )

12 # Save the r e s u l t s
model$ logL ik <− r e s u l t $ logL ik

14 o <− dim( r e s u l t $ at ) [ [ 2 ] ]
model$ at <− array ( r e s u l t $ at [ , o ] , dim = c ( l ength ( model$ at ) ) )

16 model$Pt <− array ( r e s u l t $Pt [ , , o ] , dim = c (dim( model$Pt ) ) )

61



# Return the updated model
18 re turn ( model )

}

Listing 6: Apply the Kalman filter

A.3.3. Parameter Generation

1 source ( " . /Appendix/runOptim .R" )
###########################################################################

3 # setWithPar <− createRandomParameter ( set , n )
#

5 # Generates a random se t o f i n i t i a l parameters f o r a s e t
###########################################################################

7 createRandomParameter <− f unc t i on ( set , n ) {
# Create the random i n i t a l i s e d va lue s

9 par <− matrix ( rnorm (n∗ 8 , 0 , 2) , nco l = 8 , nrow = n)
# Functions to generate a parameter vec to r from a few random va lues

11 createInitFromRandom <− f unc t i on (rV , c on f i g ) {
par <− c ( rep ( rV [ 1 ] , c on f i g $m) , rep ( rV [ 2 ]^2 , c on f i g $m) , rep ( rV [ 3 ] ,
c on f i g $n) , rep ( rV [ 4 ]^2 , c on f i g $n) , rep (0 , c on f i g $n∗ ( c on f i g $n−1)/ 2) , rV
[ 5 : 6 ] , rep ( rV [ 7 ] , c on f i g $n) , rep ( rV [ 8 ]^2 , c on f i g $d) )

13 re turn ( par )
}

15 createInitFromRandom2 <− f unc t i on (rV , con f i g , data ) {
par <− c ( apply ( data$baseProductEstData , 1 , mean , na . rm=TRUE) , rep ( rV
[ 1 ] , c on f i g $m − c on f i g $n) , rep ( rV [ 2 ]^2 , c on f i g $m) , rep ( rV [ 3 ] , c on f i g
$n) , rep ( rV [ 4 ]^2 , c on f i g $n) , rep (0 , c on f i g $n∗ ( c on f i g $n−1)/ 2) , rV [ 5 : 6 ] ,
rep ( rV [ 7 ] , c on f i g $n) , rep ( rV [ 8 ]^2 , c on f i g $d) )

17 re turn ( par )
}

19

# Evaluate which o f the random generate va lue s performs best
21 bestPar <− f unc t i on ( data ) {

c on f i g <− s e t $Conf ig ( data )
23 r e s u l t 1 <− apply ( par , 1 , f unc t i on ( arg ) { logLikP ( createInitFromRandom (

arg , c on f i g ) , con f i g , data ) })
r e s u l t 2 <− apply ( par , 1 , f unc t i on ( arg ) { logLikP ( createInitFromRandom2 (
arg , con f i g , data ) , con f i g , data ) })

25 i f (max( r e s u l t 1 ) > max( r e s u l t 2 ) ) {
re turn ( createInitFromRandom ( par [ which (max( r e s u l t 1 ) == r e s u l t 1 ) , 1 : 8 ] ,

c on f i g ) )
27 } e l s e {

62



re turn ( createInitFromRandom ( par [ which (max( r e s u l t 2 ) == r e s u l t 2 ) , 1 : 8 ] ,
c on f i g ) )

29 }
}

31

# Generate a i n i t i a l parameter s e t f o r each data s e t
33 s e t $par <− l i s t ( )

s e t $par$ s imIn i t <− bestPar ( s e t $sim )
35 s e t $par$ na In i t <− bestPar ( s e t $na )

s e t $par$ simDepInit <− bestPar ( s e t $simDep )
37 s e t $par$naDepInit <− bestPar ( s e t $simDep )

39 # Return the modifed s e t
re turn ( s e t )

41 }

43 ###########################################################################
# setWithPar <− c r ea teSta t i cParamete r ( s e t )

45 #
# Generates a f i x ed s e t o f i n i t i a l parameters f o r a s e t

47 ###########################################################################
createSta t i cParamete r <− f unc t i on ( s e t ) {

49 # Function to c r e a t e i n i t i a l parameters depending on the a v a i l a b l e data
bestPar <− f unc t i on ( data ) {

51 c on f i g <− s e t $Conf ig ( data )
par <− c ( apply ( data$baseProductEstData , 1 , mean , na . rm = TRUE) , rep (0 ,
c on f i g $m − c on f i g $n) , rep (10^7 , c on f i g $m) , rep (1 , c on f i g $n) , rep (1 ,
c on f i g $n) , rep (0 , c on f i g $n∗ ( c on f i g $n−1)/ 2) , c ( 1 , 1 ) , rep (1 , c on f i g $n) ,
rep (1 , c on f i g $d) )

53 re turn ( par )
}

55

# For each o f the four ca s e s c r e a t e the i n i t a l parameter s e t
57 s e t $par <− l i s t ( )

s e t $par$ s imIn i t <− bestPar ( s e t $sim )
59 s e t $par$ na In i t <− bestPar ( s e t $na )

s e t $par$ simDepInit <− bestPar ( s e t $simDep )
61 s e t $par$naDepInit <− bestPar ( s e t $naDep)

63 # Return the modi f i ed s e t
re turn ( s e t )

65 }

Listing 7: Static Parameter Generation

63



A.3.4. Parameter Optimisation

r e qu i r e ( s t a t s )
2 source ( " . /Appendix/createSSTModel .R" )

###########################################################################
4 # opt imisedSet <− runOptim ( setWithParameters )

#
6 # Function that runs the opt im i sa t i on a lgor i thm on a s e t with attached

# parameters , the opt im i sa t i on i s run f o r a l l f our ca s e s :
8 # sim , na , simDep , and naDep

# The r e s u l t i n g opt imised parameters are saved in
10 # se t $par ,

# the r equ i r ed time in
12 # se t $time ,

# the log−l i k e l i h o o d value in
14 # se t $optim ,

# and the e x i t s t a tu s o f the optim algor i thm in
16 # se t $ s t a tu s .

# I f the opt im i sa t i on f a i l e d the e r r o r message i s a l s o saved in
18 # se t $ s t a tu s .

###########################################################################
20 runOptim <− f unc t i on ( s e t ) {

# Optimise the sim data s e t
22 s e t $ time$sim <− system . time (

r e s u l t <− t ry ( optim ( s e t $par$ s imIn i t , logLikP , c on f i g = s e t $Config ( s e t $
sim ) , data = s e t $sim , method = "L−BFGS−B" ) , s i l e n t = TRUE)

24 ) [ 3 ]
i f ( c l a s s ( r e s u l t ) == " try−e r r o r " ) {

26 s e t $ s t a tu s $sim <− FALSE
se t $ s t a tu s $simMSG <− r e s u l t

28 } e l s e {
s e t $ s t a tu s $sim <− TRUE

30 s e t $par$ s imIn i t_Optim <− r e s u l t $par
s e t $optimVal$sim <− r e s u l t $ va lue

32 }

34 # Optimise the na data s e t
s e t $ time$na <− system . time (

36 r e s u l t <− t ry ( optim ( s e t $par$ naIn i t , logLikP , c on f i g = s e t $Config ( s e t $na
) , data = s e t $na , method = "L−BFGS−B" ) , s i l e n t = TRUE)

) [ 3 ]
38 i f ( c l a s s ( r e s u l t ) == " try−e r r o r " ) {

s e t $ s t a tu s $na <− FALSE
40 s e t $ s t a tu s $naMSG <− r e s u l t

64



} e l s e {
42 s e t $ s t a tu s $na <− TRUE

se t $par$ na In i t_Optim <− r e s u l t $par
44 s e t $optimVal$na <− r e s u l t $ va lue

}
46

# Optimise the simDep data s e t
48 s e t $ time$simDep <− system . time (

r e s u l t <− t ry ( optim ( s e t $par$ simDepInit , logLikP , c on f i g = s e t $Config (
s e t $simDep ) , data = s e t $simDep , method = "L−BFGS−B" ) , s i l e n t = TRUE)

50 ) [ 3 ]
i f ( c l a s s ( r e s u l t ) == " try−e r r o r " ) {

52 s e t $ s t a tu s $simDep <− FALSE
se t $ s t a tu s $simDepMSG <− r e s u l t

54 } e l s e {
s e t $ s t a tu s $simDep <− TRUE

56 s e t $par$ simDepInit_Optim <− r e s u l t $par
s e t $optimVal$simDep <− r e s u l t $ va lue

58 }

60 # Optimise the naDep data s e t
s e t $ time$naDep <− system . time (

62 r e s u l t <− t ry ( optim ( s e t $par$naDepInit , logLikP2 , c on f i g = s e t $Conf ig (
s e t $naDep) , data = se t $naDep , method = "L−BFGS−B" ) , s i l e n t = TRUE)

) [ 3 ]
64 i f ( c l a s s ( r e s u l t ) == " try−e r r o r " ) {

s e t $ s t a tu s $naDep <− FALSE
66 s e t $ s t a tu s $naDepMSG <− r e s u l t

} e l s e {
68 s e t $ s t a tu s $naDep <− TRUE

se t $par$naDepInit_Optim <− r e s u l t $par
70 s e t $optimVal$naDep <− r e s u l t $ va lue

}
72

re turn ( s e t )
74 }

76 # Wrapper to c a l l f k f and c a l c u l a t e the log−l i k e l i h o o d
logLikP <− f unc t i on ( par , con f i g , data ) {

78 re turn(− c a l l . f k f ( createSSTModel ( par , con f i g , yt = data$ fu l lEs tData ) , yt =
data$ fu l lEs tData ) $ logL ik )

}

Listing 8: Optimisation Algorithm

65



A.3.5. Forecast Algorithms and Measurements

1 # Required to read months c o r r e c t l y
Sys . s e t l o c a l e ( "LC_TIME" , "C" )

3 r e qu i r e ( f o r e c a s t )
r e qu i r e ( t s i n t e rm i t t e n t )

5 r e qu i r e ( zoo )
r e qu i r e (expm)

7

9 ###########################################################################
# fu l l F o r e c a s t <− f o r e c a s t . na ive_s e t ( set , h , r e c = " s imple ")

11 #
# Generates a naive f o r e c a s t , r e c g i v e s the r e c o n c i l i a t i o n method

13 ###########################################################################
fo r e c a s t . na ive_s e t <− f unc t i on ( set , h , r e c = " s imple " ) {

15 i f ( r e c == " s imple " ) {
estData <− s e t $baseProductEstData [ , dim( s e t $baseProductEstData ) [ [ 2 ] ] ]

17

# Generate the f o r e c a s t
19 f cMatr ix <− matrix ( rep ( estData , h) , nco l = h , nrow = length ( estData ) )

# Apply bottom−up f o r e c a s t
21 recFcMatrix <− s e t $S %∗% fcMatr ix

} e l s e {
23 estData <− s e t $ fu l lEs tData [ , dim( s e t $ fu l lEs tData ) [ [ 2 ] ] ]

25 # Generate the f o r e c a s t
fcMatr ix <− matrix ( rep ( estData , h) , nco l = h , nrow = length ( estData ) )

27 # Reconc i l e the f o r e c a s t
recFcMatrix <− S %∗% ginv ( t (S) %∗% S) %∗% t (S) %∗% fcMatr ix

29 }

31 re turn ( recFcMatrix )
}

33

###########################################################################
35 # fu l l F o r e c a s t <− f o r e c a s t . arima_se t ( set , h , r e c = " s imple ")

#
37 # Generates an ARIMA fo r e c a s t , r e c g i v e s the r e c o n c i l i a t i o n method

###########################################################################
39 f o r e c a s t . arima_se t <− f unc t i on ( set , h , r e c = " s imple " ) {

date <− as . yearmon ( colnames ( s e t $baseProductEstData ) [ [ 1 ] ] )
41 s t a r t <− as . numeric ( format ( date , "%Y" ) ) + ( as . numeric ( format ( date , "%m" ) )

− 1) /12

66



43 i f ( r e c == " s imple " ) {
estData <− t s ( t ( s e t $baseProductEstData ) , f requency = 12 , s t a r t = s t a r t )

45

# Fit model and generate a f o r e c a s t
47 f i t L i s t <− apply ( estData , 2 , auto . arima )

fcMatr ix <− t ( sapply ( f i t L i s t , f unc t i on ( f i t ) { f o r e c a s t ( f i t , h = h) $mean
}) )

49 # Apply bottom−up f o r e c a s t
recFcMatrix <− s e t $S %∗% fcMatr ix

51 } e l s e {
estData <− t s ( t ( s e t $ fu l lEs tData ) , f requency = 12 , s t a r t = s t a r t )

53

# Fit model and generate a f o r e c a s t
55 f i t L i s t <− apply ( estData , 2 , auto . arima )

fcMatr ix <− t ( sapply ( f i t L i s t , f unc t i on ( f i t ) { f o r e c a s t ( f i t , h = h) $mean
}) )

57 # Reconc i l e f u l l f o r e c a s t
recFcMatrix <− s e t $S %∗% ginv ( t ( s e t $S) %∗% se t $S) %∗% t ( s e t $S) %∗%
fcMatr ix

59 }

61 re turn ( recFcMatrix )
}

63

###########################################################################
65 # fu l l F o r e c a s t <− f o r e c a s t . e t s_s e t ( set , h , model = "ZZZ" , r e c = " s imple ")

#
67 # Generates an ETS fo r e c a s t , r e c g i v e s the r e c o n c i l i a t i o n method and

# model g i v e s the ETS model
69 ###########################################################################

fo r e c a s t . e t s_s e t <− f unc t i on ( set , h , model = "ZZZ" , r e c = " s imple " ) {
71 date <− as . yearmon ( colnames ( s e t $baseProductEstData ) [ [ 1 ] ] )

s t a r t <− as . numeric ( format ( date , "%Y" ) ) + ( as . numeric ( format ( date , "%m" ) )
− 1) /12

73 i f ( r e c == " s imple " ) {
estData <− t s ( t ( s e t $baseProductEstData ) , f requency = 12 , s t a r t = s t a r t )

75

# Fit model and generate a f o r e c a s t
77 f i t L i s t <− apply ( estData , 2 , ets , model = model )

fcMatr ix <− t ( sapply ( f i t L i s t , f unc t i on ( f i t ) { f o r e c a s t ( f i t , h = h) $mean
}) )

79

# Apply bottom−up f o r e c a s t

67



81 recFcMatrix <− s e t $S %∗% fcMatr ix
} e l s e {

83 estData <− t s ( t ( s e t $ fu l lEs tData ) , f requency = 12 , s t a r t = s t a r t )

85 # Fit model and generate a f o r e c a s t
f i t L i s t <− apply ( estData , 2 , ets , model = model )

87 f cMatr ix <− t ( sapply ( f i t L i s t , f unc t i on ( f i t ) { f o r e c a s t ( f i t , h = h) $mean
}) )
# Reconc i l e f u l l f o r e c a s t

89 recFcMatrix <− s e t $S %∗% ginv ( t ( s e t $S) %∗% se t $S) %∗% t ( s e t $S) %∗%
fcMatr ix

}
91

re turn ( recFcMatrix )
93 }

95 ###########################################################################
# fu l l F o r e c a s t <− f o r e c a s t . c r o s t ( set , h , r e c = " s imple ")

97 #
# Generates a f o r e c a s t us ing Croston ’ s method , r e c g i v e s the r e c o n c i l i a t i o n

99 # method
###########################################################################

101 f o r e c a s t . c r o s t <− f unc t i on ( set , h , r e c = " s imple " ) {
date <− as . yearmon ( colnames ( s e t $baseProductEstData ) [ [ 1 ] ] )

103 s t a r t <− as . numeric ( format ( date , "%Y" ) ) + ( as . numeric ( format ( date , "%m" ) )
− 1) /12

105 i f ( r e c == " s imple " ) {
estData <− t s ( t ( s e t $baseProductEstData ) , f requency = 12 , s t a r t = s t a r t )

107

# Apply bottom−up f o r e c a s t
109 f c <− t ( apply ( estData , 2 , f unc t i on ( t s ) { c r o s t ( ts , h = h , type = "

cros ton " ) $ f r c . out }) )
# Apply bottom−up f o r e c a s t

111 recFcMatrix <− s e t $S %∗% fc
} e l s e {

113 estData <− t s ( t ( s e t $ fu l lEs tData ) , f requency = 12 , s t a r t = s t a r t )

115 # Generate f u l l f o r e c a s t
f c <− t ( apply ( estData , 2 , f unc t i on ( t s ) { c r o s t ( ts , h = h , type = "
cros ton " ) $ f r c . out }) )

117 # Reconc i l e f u l l f o r e c a s t
recFcMatrix <− s e t $S %∗% ginv ( t ( s e t $S) %∗% se t $S) %∗% t ( s e t $S) %∗% fc

119 }

68



121 re turn ( recFcMatrix )
}

123

###########################################################################
125 # fu l l F o r e c a s t <− f o r e c a s t . sba ( set , h , r e c = " s imple ")

#
127 # Generates a f o r e c a s t us ing the SBA, rec g i v e s the r e c o n c i l i a t i o n

# method
129 ###########################################################################

fo r e c a s t . sba <− f unc t i on ( set , h , r e c = " s imple " ) {
131 date <− as . yearmon ( colnames ( s e t $baseProductEstData ) [ [ 1 ] ] )

s t a r t <− as . numeric ( format ( date , "%Y" ) ) + ( as . numeric ( format ( date , "%m" ) )
− 1) /12

133

i f ( r e c == " s imple " ) {
135 estData <− t s ( t ( s e t $baseProductEstData ) , f requency = 12 , s t a r t = s t a r t )

137 # Apply bottom−up f o r e c a s t
f c <− t ( apply ( estData , 2 , f unc t i on ( t s ) { c r o s t ( ts , h = h , type = "sba" )

$ f r c . out }) )
139 # Apply bottom−up f o r e c a s t

recFcMatrix <− s e t $S %∗% fc
141 } e l s e {

estData <− t s ( t ( s e t $ fu l lEs tData ) , f requency = 12 , s t a r t = s t a r t )
143

# Generate f u l l f o r e c a s t
145 f c <− t ( apply ( estData , 2 , f unc t i on ( t s ) { c r o s t ( ts , h = h , type = "sba" )

$ f r c . out }) )
# Reconc i l e f u l l f o r e c a s t

147 recFcMatrix <− s e t $S %∗% ginv ( t ( s e t $S) %∗% se t $S) %∗% t ( s e t $S) %∗%
fcMatr ix

}
149

re turn ( recFcMatrix )
151 }

153 ###########################################################################
# fu l l F o r e c a s t <− f o r e c a s t . i h f c (model , h )

155 #
# Generates an IHFC f o r e c a s t

157 ###########################################################################
fo r e c a s t . i h f c <− f unc t i on (model , h ) {

159 # Function to generate the h step ahead f o r e c a s t

69



s i ng l eFc <− f unc t i on (h) {
161 re turn ( model$S %∗% model$Z_2 %∗% ( model$Tt [ , , 1 ] %^%(h−1) ) %∗% model$ at )

}
163 f o r e c a s t <− sapply ( 1 : h , s i ng l eFc )

165 re turn ( f o r e c a s t )
}

167

###########################################################################
169 # fu l l F o r e c a s t <− f o r e c a s t . i i h f c (model , h , method = "STATIC")

#
171 # Generates an IIHFC fo r e c a s t , method d e s c r i b e s the i n t e rm i t t en t model

###########################################################################
173 f o r e c a s t . i i h f c <− f unc t i on (model , h , method = "STATIC" ) {

Xt <− model$Xt(method )
175 # Function to generate the h step ahead f o r e c a s t

s i ng l eFc <− f unc t i on (h) {
177 re turn ( model$S %∗% Xt %∗% model$Z_2 %∗% ( model$Tt [ , , 1 ] %^% (h−1) ) %∗%

model$ at )
}

179 f o r e c a s t <− sapply ( 1 : h , s i ng l eFc )

181 re turn ( f o r e c a s t )
}

Listing 9: Forecast algorithms for Sets

###########################################################################
2 # valueVector <− aMeasureForecast ( act_data , f c_data )

#
4 # Returns a vec to r o f o f a l l the measurements f o r t h i s data s e t s

###########################################################################
6 aMeasureForecast <− f unc t i on ( act_data , f c_data ) {

re turn ( c (aSMPE( act_data , f c_data ) , aSMAPE( act_data , f c_data ) , aTS( act_
data , f c_data ) , aCPI ( act_data , f c_data ) ) )

8 }

10 ###########################################################################
# value <− <averageMeasureFunction >(act_data , f c_data )

12 #
# Measures a f o r e c a s t f o r a mu l t i v a r i a t e time s e r i e s , returnd the average

14 ###########################################################################
aSMPE <− f unc t i on ( act_data , f c_data ) {

16 re turn (mean( sapply ( 1 : dim( act_data ) [ [ 1 ] ] , f unc t i on ( i ) {
re turn (SMPE( act_data [ 1 , ] , f c_data [ 1 , ] ) )

70



18 }) ) )
}

20

aSMAPE <− f unc t i on ( act_data , f c_data ) {
22 re turn (mean( sapply ( 1 : dim( act_data ) [ [ 1 ] ] , f unc t i on ( i ) {

re turn (SMAPE( act_data [ 1 , ] , f c_data [ 1 , ] ) )
24 }) ) )

}
26

aCPI <− f unc t i on ( act_data , f c_data ) {
28 re turn (mean( sapply ( 1 : dim( act_data ) [ [ 1 ] ] , f unc t i on ( i ) {

re turn (CPI( act_data [ 1 , ] , f c_data [ 1 , ] ) )
30 }) ) )

}
32

aTS <− f unc t i on ( act_data , f c_data ) {
34 re turn (mean( sapply ( 1 : dim( act_data ) [ [ 1 ] ] , f unc t i on ( i ) {

re turn ( Track ingS igna l ( act_data [ 1 , ] , f c_data [ 1 , ] ) )
36 }) ) )

}
38

###########################################################################
40 # value <− <measureFunction >(actual , f o r e c a s t )

#
42 # Measures a f o r e c a s t f o r a un i v a r i t e time s e r i e s

###########################################################################
44 Track ingS igna l <− f unc t i on ( actua l , f o r e c a s t ) {

mad <− sum( abs ( actua l−f o r e c a s t ) , na . rm= TRUE) / sum( ! i s . nan ( f o r e c a s t ) , na
. rm = TRUE)

46 t s <− sum( actua l−f o r e c a s t , na . rm = TRUE) / mad

48 re turn ( t s )
}

50

SMPE <− f unc t i on ( actual , f o r e c a s t ) {
52 re turn ( round (mean(2 ∗ ( ac tua l − f o r e c a s t ) / ( abs ( ac tua l )+ abs ( f o r e c a s t ) ) ,

na . rm = TRUE) ) )
}

54

CPI <− f unc t i on ( actual , f o r e c a s t , d i g i t s = 3) {
56 re turn ( round (mean( as . numeric ( abs ( ac tua l − f o r e c a s t ) < 0 .5 ∗ f o r e c a s t ) , na

. rm = TRUE) ) )
}

71



Listing 10: Forecast algorithms for Sets

1 r e qu i r e ( t s i n t e rm i t t e n t )
###########################################################################

3 # measuredTable <− createIHFCTableEntry ( set , dep = FALSE)
#

5 # Calcu la te the f o r e c a s t performance o f the d i f f e r e n t ( I )IHFC methods
# I f dep = TRUE, then the s e t s with aggregate s are used

7 ###########################################################################
createIHFCTableEntry <− f unc t i on ( set , dep = FALSE) {

9 # Choose the r i gh t parameters
i f ( dep ) {

11 data_sim <− s e t $simDep
data_na <− s e t $naDep

13 i f ( s e t $ s t a tu s $simDep ) {
simPar <− s e t $par$ simDepInit_Optim

15 } e l s e {
simPar <− s e t $par$ simDepInit

17 }
i f ( s e t $ s t a tu s $naDep) {

19 naPar <− s e t $par$naDepInit_Optim
} e l s e {

21 naPar <− s e t $par$naDepInit
}

23 } e l s e {
data_sim <− s e t $sim

25 data_na <− s e t $na
i f ( s e t $ s t a tu s $sim ) {

27 simPar <− s e t $par$ s imIn i t_Optim
} e l s e {

29 simPar <− s e t $par$ s imIn i t
}

31 i f ( s e t $ s t a tu s $na ) {
naPar <− s e t $par$ na In i t_Optim

33 } e l s e {
naPar <− s e t $par$ na In i t

35 }
}

37

# Add the s t a t i s t i c a l va lue s
39 cv2 <− round (mean( apply ( cbind ( data_sim$ fu l lEstData , data_sim$ fullFCData ) ,

1 , f unc t i on ( t s ) { re turn ( i d c l a s s ( ts , type = "SBC" , outp lo t = FALSE) $
cv2 ) }) , na . rm = TRUE) , 3)

72



p <− round (mean( apply ( cbind ( data_sim$ fu l lEstData , data_sim$ fullFCData ) ,
1 , f unc t i on ( t s ) { re turn ( i d c l a s s ( ts , type = "SBC" , outp lo t = FALSE) $p)
}) , na . rm = TRUE) , 3)

41

# Generate IHFC f o r e c a s t
43 f c_i h f c <− f o r e c a s t . i h f c ( createSSTModel ( simPar , c on f i g = s e t $Conf ig ( data_

sim ) , yt = data_sim$ fu l lEs tData ) , s e t $FCLength )

45 # Generate the d i f f e r e n t IIHFC f o r e c a s t s
model <− createSSTModel ( naPar , c on f i g = s e t $Config ( data_sim ) , yt = data_

na$ fu l lEs tData )
47 f c_i i h f c_s t a t <− f o r e c a s t . i i h f c (model , s e t $FCLength , "STATIC" )

f c_i i h f c_s ta t2 <− f o r e c a s t . i i h f c (model , s e t $FCLength , "STATIC2" )
49 f c_i i h f c_cro <− f o r e c a s t . i i h f c (model , s e t $FCLength , "CRO" )

f c_i i h f c_sba <− f o r e c a s t . i i h f c (model , s e t $FCLength , "SBA" )
51 ac tua l <− data_sim$ fullFCData

53 # Remove the added l i n e s to c a l c u l a t e the f o r e c a s t performance
i f ( dep ) {

55 f c_i h f c <− f c_i h f c [−c ( 1 : 3 ) , ]
f c_i i h f c_s t a t <− f c_i i h f c_s t a t [−c ( 1 : 3 ) , ]

57 f c_i i h f c_s ta t2 <− f c_i i h f c_s ta t2 [−c ( 1 : 3 ) , ]
f c_i i h f c_cro <− f c_i i h f c_cro [−c ( 1 : 3 ) , ]

59 f c_i i h f c_sba <− f c_i i h f c_sba [−c ( 1 : 3 ) , ]
a c tua l <− ac tua l [−c ( 1 : 3 ) , ]

61 }
# Calcu la te the r e s u l t s

63 r e s u l t <− rbind ( c ( s e t $name , rep (NA, 6) ) ,
c ( "IHFC" , p , cv2 , aMeasureForecast ( actua l , f c_i h f c ) ) ,

65 c ( "IHFC−1" , p , cv2 , aMeasureForecast ( actua l , f c_i i h f c_
s t a t ) ) ,

c ( "IHFC−2" , p , cv2 , aMeasureForecast ( actua l , f c_i i h f c_
s ta t2 ) ) ,

67 c ( "IHFC−CRO" , p , cv2 , aMeasureForecast ( actua l , f c_i i h f c_
cro ) ) ,

c ( "IHFC−SBA" , p , cv2 , aMeasureForecast ( actua l , f c_i i h f c_
sba ) ) )

69

# Name and return the r e s u l t s
71 colnames ( r e s u l t ) <− c ( "Algorithm" , "p" , "cv2" , "sMpe" , "sMape" , "TS" , "

CPI" )
re turn ( r e s u l t )

73 }

73



75 ###########################################################################
# measuredTable <− createARTableEntry ( set , i i h f c_method , dep = FALSE)

77 #
# Calcu la te the f o r e c a s t performance o f the d i f f e r e n t methods with the

79 # ( I )IHFC method o f cho i c e
# I f dep = TRUE, then the s e t s with aggregate s are used

81 ###########################################################################
createARTableEntry <− f unc t i on ( set , i i h f c_method , dep = FALSE) {

83 # Choose the r i gh t parameters
i f ( dep ) {

85 data_sim <− s e t $simDep
data_na <− s e t $naDep

87 i f ( s e t $ s t a tu s $simDep ) {
simPar <− s e t $par$ simDepInit_Optim

89 } e l s e {
simPar <− s e t $par$ simDepInit

91 }
i f ( s e t $ s t a tu s $naDep) {

93 naPar <− s e t $par$naDepInit_Optim
} e l s e {

95 naPar <− s e t $par$naDepInit
}

97 } e l s e {
data_sim <− s e t $sim

99 data_na <− s e t $na
i f ( s e t $ s t a tu s $sim ) {

101 simPar <− s e t $par$ s imIn i t_Optim
} e l s e {

103 simPar <− s e t $par$ s imIn i t
}

105 i f ( s e t $ s t a tu s $na ) {
naPar <− s e t $par$ na In i t_Optim

107 } e l s e {
naPar <− s e t $par$ na In i t

109 }
}

111

# Generate the s t a t i s t i c a l va lue s
113 cv2 <− round (mean( apply ( cbind ( data_sim$ fu l lEstData , data_sim$ fullFCData ) ,

1 , f unc t i on ( t s ) { re turn ( i d c l a s s ( ts , type = "SBC" , outp lo t = FALSE) $
cv2 ) }) , na . rm = TRUE) , 3)

p <− round (mean( apply ( cbind ( data_sim$ fu l lEstData , data_sim$ fullFCData ) ,
1 , f unc t i on ( t s ) { re turn ( i d c l a s s ( ts , type = "SBC" , outp lo t = FALSE) $p)
}) , na . rm = TRUE) , 3)

74



115

# Create the r i g h t ( I )IHFC f o r e c a s t
117 i f ( i i h f c_method == "NO" ) {

f c_i i h f c <− f o r e c a s t . i h f c ( createSSTModel ( simPar , c on f i g = s e t $Conf ig (
data_sim ) , yt = data_sim$ fu l lEs tData ) , s e t $FCLength )

119 f c_s t r i n g <− "IHFC"

121 } e l s e {
model <− createSSTModel ( naPar , c on f i g = s e t $Config ( data_sim ) , yt =
data_na$ fu l lEs tData )

123

i f ( i i h f c_method == "STATIC" ) {
125 f c_i i h f c <− f o r e c a s t . i i h f c (model , s e t $FCLength , "STATIC" )

f c_s t r i n g <− "IIHFC−1"
127 } e l s e i f ( i i h f c_method == "STATIC2" ) {

f c_i i h f c <− f o r e c a s t . i i h f c (model , s e t $FCLength , "STATIC2" )
129 f c_s t r i n g <− "IIHFC−2"

} e l s e i f ( i i h f c_method == "CRO" ) {
131 f c_i i h f c <− f o r e c a s t . i i h f c (model , s e t $FCLength , "CRO" )

f c_s t r i n g <− "IIHFC−CRO"
133 } e l s e i f ( i i h f c_method == "SBA" ) {

f c_i i h f c <− f o r e c a s t . i i h f c (model , s e t $FCLength , "SBA" )
135 f c_s t r i n g <− "IIHFC−SBA"

}
137 }

139 # Create the other f o r e c a s t s
ac tua l <− data_sim$ fullFCData

141 f c_arima <− f o r e c a s t . arima_se t ( data_sim , s e t $FCLength )
f c_e t s <− f o r e c a s t . e t s_s e t ( data_sim , s e t $FCLength )

143 f c_cro <− f o r e c a s t . c r o s t ( data_sim , s e t $FCLength )
f c_sba <− f o r e c a s t . sba ( data_sim , s e t $FCLength )

145

# Remove the added l i n e s to c a l c u l a t e the f o r e c a s t performance
147 i f ( dep ) {

f c_i i h f c <− f c_i i h f c [−c ( 1 : 3 ) , ]
149 f c_arima <− f c_arima[−c ( 1 : 3 ) , ]

f c_e t s <− f c_e t s [−c ( 1 : 3 ) , ]
151 f c_cro <− f c_cro [−c ( 1 : 3 ) , ]

f c_sba <− f c_sba [−c ( 1 : 3 ) , ]
153 ac tua l <− ac tua l [−c ( 1 : 3 ) , ]

}
155 # Calcu la te the f o r e c a s t performance

r e s u l t <− rbind ( c ( s e t $name , rep (NA, 6) ) ,

75



157 c ( "ARIMA" , p , cv2 , aMeasureForecast ( actua l , f c_arima ) ) ,
c ( "ETS" , p , cv2 , aMeasureForecast ( actua l , f c_e t s ) ) ,

159 c ( "CRO" , p , cv2 , aMeasureForecast ( actua l , f c_cro ) ) ,
c ( "SBA" , p , cv2 , aMeasureForecast ( actua l , f c_sba ) ) ,

161 c ( f c_s t r i ng , p , cv2 , aMeasureForecast ( actua l , f c_i i h f c ) ) )

163 # Name and return the r e s u l t s
colnames ( r e s u l t ) <− c ( "Algorithm" , "p" , "cv2" , "sMpe" , "sMape" , "TS" , "

CPI" )
165 re turn ( r e s u l t )

}

Listing 11: Generating measurement tables

B. Figures

Figure 5: ACF of a constant function

76



Figure 6: ACF of a linear function

Figure 7: ACF of a quadratic function

77



Figure 8: ACF of an alternating function

Figure 9: ACF of a sinusoidal function

78



Figure 10: SBC classification schema

79



Figure 11: KHs exact and approximate classification schemas

Figure 12: Classification schemas PK and PKa

80



Figure 13: Plot of average inter-demand interval against the coefficient of variation for
products sets from OCA.

C. Extensive Tables

C.1. Random Initialised Parameters

C.2. Static Initialised Parameters

C.3. Comparison with simplistic Forecasting Methods

81



Table 6: Forecast performance with random initialised optimisation

Algorithm adi cv2 sMpe sMape TS CPI

ABAAJBAAIFA
IHFC 2.639 0.601 2 1.96 12 0

IHFC-1 2.639 0.601 2 1.978 12 0
IHFC-2 2.639 0.601 2 1.991 12 0

IHFC-CRO 2.639 0.601 2 1.983 12 0
IHFC-SBA 2.639 0.601 2 1.984 12 0

ADAARAAAHAA
IHFC 2.166 0.841 2 1.943 12 0

IHFC-1 2.166 0.841 2 1.777 12 0
IHFC-2 2.166 0.841 2 2 12 0

IHFC-CRO 2.166 0.841 2 1.835 12 0
IHFC-SBA 2.166 0.841 2 1.837 12 0

ADAAAFAAHAA
IHFC 1.857 0.712 2 2 12 0

IHFC-1 1.857 0.712 1 1.423 11.742 0
IHFC-2 1.857 0.712 2 1.825 12 0

IHFC-CRO 1.857 0.712 1 1.474 11.948 0
IHFC-SBA 1.857 0.712 1 1.477 11.947 0

AEAAYIAAZDA
IHFC 1.477 0.31 1 1.575 1.374 0

IHFC-1 1.477 0.31 2 2 12 0
IHFC-2 1.477 0.31 2 1.977 12 0

IHFC-CRO 1.477 0.31 2 2 12 0
IHFC-SBA 1.477 0.31 2 2 12 0

82



Table 7: Forecast performance with static initialised optimisation

Algorithm adi cv2 sMpe sMape TS CPI

ABAAJBAAIFA
IHFC 2.639 0.601 0 0.402 -5.356 1

IHFC-1 2.639 0.601 -1 0.73 -11.77 0
IHFC-2 2.639 0.601 0 0.403 7.587 1

IHFC-CRO 2.639 0.601 0 0.52 -9.841 1
IHFC-SBA 2.639 0.601 0 0.458 -8.709 1

ADAARAAAHAA
IHFC 2.166 0.841 1 0.555 11.874 0

IHFC-1 2.166 0.841 0 0.418 0.345 1
IHFC-2 2.166 0.841 2 1.994 12 0

IHFC-CRO 2.166 0.841 0 0.462 9.497 1
IHFC-SBA 2.166 0.841 0 0.47 10.135 0

ADAAAFAAHAA
IHFC 1.857 0.712 0 0.616 -7.02 1

IHFC-1 1.857 0.712 -1 0.807 -10.866 0
IHFC-2 1.857 0.712 1 1.34 11.192 0

IHFC-CRO 1.857 0.712 -1 0.63 -7.814 1
IHFC-SBA 1.857 0.712 -1 0.632 -7.908 1

AEAAYIAAZDA
IHFC 1.477 0.31 0 0.253 6.962 1

IHFC-1 1.477 0.31 0 0.255 -9.398 1
IHFC-2 1.477 0.31 1 1.118 12 0

IHFC-CRO 1.477 0.31 0 0.249 6.683 1
IHFC-SBA 1.477 0.31 0 0.221 4.575 1

83



Table 8: Forecast performance with static initialised optimisation, comparing with non-
integrated algorithms

Algorithm adi cv2 sMpe sMape TS CPI

ABAAJBAAIFA
ARIMA 2.639 0.601 -1 0.664 -11.277 1

ETS 2.639 0.601 0 0.391 -4.129 1
CRO 2.639 0.601 0 0.365 0.348 1
SBA 2.639 0.601 0 0.365 0.962 1
IHFC 2.639 0.601 0 0.402 -5.356 1

ADAARAAAHAA
ARIMA 2.166 0.841 1 0.516 11.833 0

ETS 2.166 0.841 0 0.476 10.73 0
CRO 2.166 0.841 0 0.524 11.643 0
SBA 2.166 0.841 1 0.529 11.682 0

IIHFC-1 2.166 0.841 0 0.418 0.345 1

ADAAAFAAHAA
ARIMA 1.857 0.712 0 0.602 -5.652 1

ETS 1.857 0.712 0 0.594 -5.416 1
CRO 1.857 0.712 0 0.599 -5.955 1
SBA 1.857 0.712 0 0.601 -6.087 1

IIHFC-CRO 1.857 0.712 -1 0.63 -7.814 1

AEAAYIAAZDA
ARIMA 1.477 0.31 0 0.257 -9.138 1

ETS 1.477 0.31 0 0.265 -9.362 1
CRO 1.477 0.31 0 0.248 6.635 1
SBA 1.477 0.31 0 0.242 6.228 1

IIHFC-SBA 1.477 0.31 0 0.221 4.575 1

84


	List of Figures
	List of Tables
	Introduction
	Background
	Statistical Methods
	Statistical Properties of Time Series
	Time Series Classification
	Probability Distributions
	Forecast Performance Measures
	Non-intermittent Demand Modelling and Forecasting
	Naive Forecast
	Box-Jenkins Method
	Exponential Smoothing
	Basic StructuralModel

	Intermittent Demand Modelling and Parameter Estimation
	Crostons Method
	Syntetos-Boylan-Approximation
	Maximum Likelihood Estimation
	Kalman Filter
	Optimisation Algorithms

	Hierarchical Gorecasting
	Basic Hierarchical Forecast
	Hierarchical Reconciliation
	Integrated Hierarchical Forecasting


	Algorithm Development
	Data Preparation and Selection
	Data Sources
	Data Description
	Data Cleaning
	Test Case Selection

	Development of the New Forecast Algorithm
	Intermittent Integrated Hierarchical Forecast
	Calculation of the Intermittent Influence
	Parameter Estimation
	Implementation Methods
	Forecast Performance Measure


	Conclusion and Further Research
	Conclusion
	Further Research

	Bibliography
	Appendices
	R Code
	Execution Code
	Data Cleaning and Set Generation
	Identifying Missing Values
	Time Period Selection
	Set Generation

	Tools to generate Forecasts
	IIHFC Model Generation
	Applying the Kalman Filter
	Parameter Generation
	Parameter Optimisation
	Forecast Algorithms and Measurements


	Figures
	Extensive Tables
	Random Initialised Parameters
	Static Initialised Parameters
	Comparison with simplistic Forecasting Methods


