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Purpose of the communication: Management of logistics distribution networks is a challeng-
ing task for decision-makers. In order to assist them, logistics assistance systems have been
developed, which are decision support systems for logistics. Logistics assistance systems can
integrate a simheuristic approach that combines simulation and metaheuristics to optimize the
performance of the logistics distribution network. Simulation models the complex system of the
distribution network and metaheuristics optimizes this network. In the iterative optimization
within the metaheuristic algorithm, the metaheuristic forms promising solutions and the simu-
lation evaluates the solution based on the performance of the distribution network. The logistics
assistance system recommends solutions in the form of action plans that consist of actions, e.g.,
increase the stock level of a stock keeping unit (SKU) or centralize it at a specific network node.
This paper studies the correlation between sequential actions in the action plan and their impact
on the performance of a logistics distribution network, e.g., cost and service level. It aims to
utilize the correlation in the simheuristic approach in the logistics support system to improve
the optimization method for the distribution network.
Research design, methodological approach: This research defines a correlation relation between
sequential actions and their impact on the performance of the network. Then, a metaheuristic,
evolutionary algorithm in the simheuristic approach is updated to utilize the correlation in the
exploration of search space and action plan construction.

Results obtained: Analyzing sequential actions reveals that the impact of an action can de-
pend on the previously applied actions on the distribution network. Utilizing this relation in an
example showed a reduction in the number of iterations needed to find promising solutions.

Theoretical contributions: This research provides a relation between sequential actions and their
impact on the performance of a logistics distribution network.

Managerial contributions: Theoretical contributions define action relations that can be used
to improve the decision making in a logistics distribution network.
Limitations: The paper’s scope is limited to distribution networks in material trading. The
research focuses on actions in a logistics distribution network in material trading that consists

∗Corresponding author: markus.rabe@tu-dortmund.de
†Speaker



of sites where items are stored as SKUs. The optimization solution is in the form of an action
plan that specifies the actions to be applied to the distribution network as well as their order.
The preliminary experiments are limited to examples and the method needs to be verified using
a real-world case study.

Keywords: Distribution networks, Logistics assistance system, Domain specific information, Evo-
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Purpose of the communication: Management of logistics distribution networks is a challenging 

task for decision-makers. In order to assist them, logistics assistance systems have been 

developed, which are decision support systems for logistics. Logistics assistance systems can 

integrate a simheuristic approach that combines simulation and metaheuristics to optimize the 

performance of the logistics distribution network. Simulation models the complex system of 

the distribution network and metaheuristics optimizes this network. In the iterative 

optimization within the metaheuristic algorithm, the metaheuristic forms promising solutions 

and the simulation evaluates the solution based on the performance of the distribution network. 

The logistics assistance system recommends solutions in the form of action plans that consist 

of actions, e.g., increase the stock level of a stock keeping unit (SKU) or centralize it at a 

specific network node. This paper studies the correlation between sequential actions in the 

action plan and their impact on the performance of a logistics distribution network, e.g., cost 

and service level. It aims to utilize the correlation in the simheuristic approach in the logistics 

support system to improve the optimization method for the distribution network.  

  

Research design, methodological approach: This research defines a correlation relation 

between sequential actions and their impact on the performance of the network. Then, a 

metaheuristic, evolutionary algorithm in the simheuristic approach is updated to utilize the 

correlation in the exploration of search space and action plan construction.  

 

Results obtained: Analyzing sequential actions reveals that the impact of an action can depend 

on the previously applied actions on the distribution network. Utilizing this relation in an 

example showed a reduction in the number of iterations needed to find promising solutions. 

 

Theoretical contributions: This research provides a relation between sequential actions and 

their impact on the performance of a logistics distribution network. 

 

Managerial contributions: Theoretical contributions define action relations that can be used to 

improve the decision making in a logistics distribution network. 



 

Limitations: The paper’s scope is limited to distribution networks in material trading. The 

research focuses on actions in a logistics distribution network in material trading that consists 

of sites where items are stored as SKUs. The optimization solution is in the form of an action 

plan that specifies the actions to be applied to the distribution network as well as their order. 

The preliminary experiments are limited to examples and the method needs to be verified using 

a real-world case study.  
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1. INTRODUCTION 

 

Decision making in logistics distribution networks is a challenging task. A logistics distribution 

network consists of sites, suppliers, and customers (Christopher, 2011). Sites are supplied with 

a variety of items by suppliers, and the items are stored as stock keeping units (SKUs). 

Customers receive the products according to their placed orders. The performance of a logistics 

distribution network is evaluated by a variety of performance measures that can be 

contradictory (Rushton, Croucher, & Baker, 2010), such as costs and service level. 

 

In order to support decision-makers, decision support systems are used (Heilala et al., 2010). 

For this purpose, a model of the logistics distribution network is required (Riddalls, Bennett, 

& Tipi, 2000). Mathematical models or simulation models can be used. These models mimic a 

real logistics distribution network and can be used to evaluate the performance measures of the 

network after applying a variety of changes (Law, 2015). Logistics distribution networks are 

complex; thus, simulation tools, such as discrete event simulation, have been successfully used 

to model this kind of networks. 

 

Optimization algorithms like metaheuristics have been developed to optimize the performance 

of systems (Talbi, 2009). Complex systems can be optimized using simheuristics (Juan, Faulin, 

Grasman, Rabe, & Figueira, 2015). Simheuristics combine simulation and metaheuristics, in 

which simulation is used to model complex systems (Juan & Rabe, 2013). As a result, decision 

support systems based on a simheuristic approach have been developed to support decision-

makers to optimize complex systems. If the decision support system optimizes a logistics 

network, the system is called a logistics assistance system (LAS) (Liebler, Beissert, Motta, & 

Wagenitz, 2013). Rabe, Dross, Schmitt, Ammouriova, and Ipsen (2017) developed such a 

system, in which the optimization of the logistics networks is formulated as an 𝑁𝑃-hard 

combinatorial optimization problem. The search space consists of elements presented as 

actions, e.g., increase the stock level of an SKU at a site. The size of the search space associated 

with a logistics distribution network is significantly ample and increases as the size of the 

logistics network increases. A large search space triggers a large number of iterations in the 

used optimization algorithms. As a result, there is – similar to comparable systems – a long 

response time because of the logistics network complexity. Some approaches have been 

developed to reduce the size of the search space of optimization problems (Ku & Arthanari, 

2016; Rabe, Schmitt, & Ammouriova, 2018b). 



This paper introduces an approach to guide the optimization algorithm in selecting a solution’s 

elements without reducing the original search space. The approach aims in constructing more-

promising solutions within a lower number of algorithm’s iterations. The paper is organized as 

follows: Related work is summarized in Section 2. Section 3 defines an approach to improve 

the performance of the optimization algorithms. Section 4 presents the utilization of the 

approach in constructing solutions. Next, an example utilizing the approach is discussed in 

Section 5. The paper closes with an outlook.  

 

2. OPTIMIZATION OF LOGISTICS DISTRIBUTION NETWORKS  

 

Managing logistics distribution networks is a complex task (Christopher, 2011; Rushton et al., 

2010). The complexity raises from the uncertainties, the interrelations between elements in the 

logistics distribution network, the contradiction between the performance measures of the 

networks, and the variety of decisions. The performance measures evaluate the logistics 

distribution network’s performance and can be used to compare its performance to prior periods 

or studying the impact of changes applied to the network (Ghiani, Laporte, & Musmanno, 

2013). Costs and service level are examples of these performance measures. The complex 

problem cannot be formulated using a mathematical equation and solved by exact algorithms. 

 

2.1. Optimizing logistics distribution networks using logistics assistance 

systems  

 

A simplified architecture of a LAS developed by Rabe et al. (2017) is shown in Figure 1. In 

this LAS, the optimization problem is the optimization of a logistics distribution network in 

material trading by minimizing costs and maximizing a service level. The LAS is based on a 

simheuristic approach that combines simulation and metaheuristics (Juan et al., 2015; Juan & 

Rabe, 2013). In simheuristics, the simulation is used to model a system and to evaluate the 

objective function value of an optimization problem. Metaheuristics are used to optimize the 

system.  



 

Figure 1: A simplified architecture of the developed LAS based on Rabe et al. (2017).  

 

The logistics distribution network is modeled using data-driven discrete event simulation (Rabe 

et al., 2017). The structure of the network is stored in a database that includes the parameters 

of the network model. Changes to the network can be applied using SQL statements. These 

changes are associated with selected actions from the search space. An action presents an 

activity, such as “increase the stock level of SKU 1 in site A” or “centralize SKU 1 in site A”. 

The Heuristic Unit (HU) stores a library of metaheuristics algorithms. The metaheuristic 

algorithm selects actions and forms action plans. Actions are arranged in an action plan that 

also presents their order to be applied on the network. The impact of an action plan on the 

performance of the network is evaluated using simulation. For example, costs and service levels 

are considered performance measures in logistics distribution networks (Rushton et al., 2010). 

The performance measures are read from the database and are used by the metaheuristic 

algorithm to explore other actions and to form new action plans. The most-promising action 

plan is recommended after a termination criterion is met, such as reaching a maximum number 

of iterations in the HU or reaching stagnation. 

 

One of the metaheuristics algorithms in the HU in the LAS is an evolutionary algorithm to 

construct solutions and explore the search space. The evolutionary algorithms solve problems 

with complex search spaces (Bonyadi, Michalewicz, Wagner, & Neumann, 2019). The 

development of evolutionary algorithms has been inspired by the natural evolution process 

(Talbi, 2009). The population in the algorithm consists of individuals that represent solutions 

of an optimization problem, which are in our case action plans in the LAS. The operators in 

the algorithms mimic those in the evolution process: selecting the fittest individuals, crossover, 

and mutation. The individuals are evaluated with respect to a fitness function that presents the 

objective function of the optimization problem. Forming subsequent generations is based on 

the selection of the fit individuals. New individuals are formed by crossover and mutation of 



the selected individuals. In the crossover, solution parts are exchanged between the selected 

individuals by defining one or more crossing points, such as one-point cross over or two-point 

crossover. In the mutation, a value is substituted by another value in an individual.  

 

In the LAS, the actions are defined with the help of action types (Rabe et al., 2017). An action 

type is a generic description of the actions, e.g., “increase the stock level of an SKU in a site” 

without specifying the SKU and the site. Actions are derived from an action type by adding 

parameters to it, such as SKU 1 and site A. An action type’s definition includes the action 

type’s name, its description in natural language, required information for the execution and 

derivation of actions, and placeholders for the input parameters (Rabe et al., 2017). The 

information for the derivation and execution of actions from an action type is presented by SQL 

statements required to inquire the database and apply changes associated with the actions. 

Additionally, the action type’s definition includes domain-specific information that aims to 

improve the performance of optimization algorithms, such as success and type of changes 

(Rabe, Ammouriova, & Schmitt, 2018a). Additionally, a correlation between actions as 

domain-specific information is discussed in this paper.  

 

2.2.  Improving the performance of optimization algorithms 

 

Researchers have studied the performance of optimization algorithms (Beiranvand, Hare, & 

Lucet, 2017; Talbi, 2009). The performance of optimization algorithms can be measured by 

their efficiency and the quality of found solutions (Beiranvand et al., 2017). The number of the 

algorithm’s iterations and the number of objective function evaluations express the algorithm’s 

efficiency. Additionally, researchers have studied approaches to increase the performance of 

the optimization algorithms (Bode, Reed, Reuschen, & Nowak, 2019; Karimi, Isazadeh, & 

Rahmani, 2017; Lokman, 2019). They aimed to reduce the number of iterations to find 

promising solutions. For example, an abstraction method to reduce the size of the search space 

has been used by Ku and Arthanari (2016) to reduce the number of algorithm’s iterations. 

Gomes and Saraiva (2016) studied elements to be included in a solution and construct good 

quality solutions. Sitek, Bzdyra, and Wikarek (2016) and Drugan (2018) reduced the size of 

the studied problem by simplifying it; they reduced the number of objective functions. 

 

Amaran, Sahinidis, Sharda, & Bury (2016) stated that using knowledge about the optimization 

problem improves the performance of the optimization algorithms, especially when simulation 



is used. An example of such knowledge is domain-specific information. This information 

presents specific input about the optimization problem and its variables. Rabe et al. (2018a) 

used success and the type of actions (the type of changes) to improve the performance of an 

evolutionary algorithm in optimizing a logistics distribution network.  

 

In this paper, the authors aim to introduce other domain-specific information. They define a 

correlation relation between actions. Correlation defines an existing relationship between 

variables (Sheskin, 2011). The authors illustrate a theoretical example to demonstrate their 

impact on the performance of the optimization algorithm. 

 

3. DETERMINATION OF CORRELATION OF ACTIONS 

 

A correlation relation refers to the relation between two variables. In this paper, the relation is 

related to the impact of two sequential actions on the considered performance measure of the 

logistics distribution network. This section defines the correlation relation between actions and 

action types in the LAS. 

 

3.1. Definition of correlation between actions 

 

The correlation relation focuses on two sequential actions, e.g., 𝑎୧ and 𝑎୨, and defines their 

impact on the performance of a distribution network if applied sequentially. To define the 

relation, the impact of the sequential actions, 𝑅൫ൣ𝑎௜ , 𝑎௝൧൯, is compared with the expected impact 

of the single actions, 𝑎௜and 𝑎௝. The expected impact assumes the independence of the actions 

and is calculated as the summation of the impact of 𝑎௜ and the impact of 𝑎௝, 𝑅ሺ𝑎௜ሻ ൅ 𝑅൫𝑎௝൯. 
The relationship can be a positive (൅), a negative (െ), or a weak (~) relation. The positive 

relation indicates that applying two sequential actions has a positive impact on the performance 

of the distribution network compared to the impact of the single considered actions, 𝑅൫ൣ𝑎௜ ,𝑎௝൧൯ ൐ 𝑅ሺ𝑎௜ሻ ൅ 𝑅൫𝑎௝൯. For example, applying 𝑎ଵ followed by 𝑎ଶ, ሾ𝑎ଵ, 𝑎ଶሿ, increased the 

costs reduction compared to the partial reductions after applying 𝑎ଵ or 𝑎ଶ, only (Figure 2). The 

reduction in costs became 400 € compared with the expected reduction of 200 € when summing 

up the reductins for 𝑎ଵ (50 €) and 𝑎ଶ (150 €). 



 

Figure 2: An impact of actions on the reduction of costs in a logistics distribution network. 

 

On the other hand, the negative relation indicates a deterioration in the performance of the 

network. For example, applying 𝑎ଵ after 𝑎ଶ did not reduce the costs as the expectation from 

applying both 𝑎ଵ and 𝑎ଶ (Figure 2). The costs were reduced by 80 €, while the expectation was 

200 €. Hence, the relation between 𝑎ଶ followed by 𝑎ଵ, ሾ𝑎ଶ,𝑎ଵሿ, and the performance of the 

network is a negative relation. If the relation between the two considered sequential actions 

could not be classified neither as a positive nor as a negative relation, it is called a weak relation, 

in which no change in the performance happens. The relation between actions can be presented 

in a correlation matrix, in which the row presents the first applied action and the column 

presents the subsequently applied action, such as the correlation matrix in Table 2 in the 

Appendix. 

 

The definition of the correlation relation between actions is assigned based on literature 

recommendations. For example, the stock level of an SKU in a site should be increased if the 

site became the centralized site (Rushton et al., 2010). Additionally, experiments can be 

conducted to study the relationship between actions, such as experiments on simulation models. 

An action is applied to the simulation model, and the performance of the model regarding the 

performance measures is recorded. Other actions are applied, and their impact on the 

performance measure is recorded. Then, sequential actions are applied, and their impact on the 

performance measures is compared to the performance measure of the single applied actions 

to determine the relation. In stochastic models, more than one comparison is needed to 

determine the correlation relation. 

 



3.2. Defining the correlation between action types in the LAS 

 

Since the actions are derived from action types in the LAS, the correlation relations are added 

to the definition of the action types. The correlation relation in the action types’ definition is 

generalized and is associated with  specific types of action pairs.  

 

In order to determine the correlation relation between action types, the relation between actions 

derived from the two action types is studied. The studied actions affect the same entities in the 

logistics distribution network, e.g., SKU 1 in site A. For example, to study the relation between 

“centralize” and “increase the stock level” action types, the studied pairs of actions are: 

“centralize SKU 1 in site A” and “increase the stock level of SKU 1 in site A” as a pair of 

actions, and “centralize SKU 1 in site B” and “increase the stock level of SKU 1 in site B” as 

another pair of actions. When comparing the effect of the paired actions derived from these 

action types, a conclusion about the relationship is drawn. If most of the action pairs possess a 

positive relation, then the relationship of the action type pair is considered a positive relation. 

 

Actions derived from the action type possess the defined attributes of their respective action 

types. For example, action type 𝐴𝑇ଵ has a positive relation with action type 𝐴𝑇ଶ, and a negative 

relation with action type 𝐴𝑇ଷ. Thus, 𝑎ଵଵ derived from 𝐴𝑇ଵ is expected to have a positive relation 

with 𝑎ଵଶ and a negative relation with 𝑎ଵଷ, as long as each pair of related actions affects the same 

entity in the logistics distribution network.  

 

The definition of the relation between the two action types excludes the relation between 

actions affecting different entities, such as an action affecting SKU 2 in site A, and an action 

affecting SKU 2 in site C. These actions are considered independent, and accordingly 𝑅൫ൣ𝑎௜ ,𝑎௝൧൯ ൌ 𝑅ሺ𝑎௜ሻ ൅ 𝑅൫𝑎௝൯. Thus, the derived action pairs that affect different entities are 

considered weakly correlated. The relationship between these actions is not considered in the 

definition of the action type; the relations between these actions are mostly weak or difficult to 

predict because of the complex interactions between the elements in the network. Additionally, 

experiments for the determination of the relation between these action pairs can be time-

consuming because of the enormous number of action pairs’ combinations required to compare. 

For example, two action types are considered, and four actions are derived from each action 

type. Eight actions are derived and the number of action pairs to examine becomes 56 pairs 



(8 ൈ 7ሻ considering the permutation of the actions in the action pair – this number of action 

pairs increases as the number of derived actions from action types increases. 

 

As a result of the defined correlation between action types, a correlation matrix between the 

action types can be constructed (Table 1). The diagonal cells in the matrix present the 

duplication of an action. The duplication of an action can enhance the performance, deteriorate 

it, or have no effect. For example, duplication of “centralize an SKU in a site” does not change 

the performance of the logistics network: The costs of a logistics distribution network might 

be reduced when “centralize SKU 1 in site A” is applied, but duplicating the action does not 

cause further reductions. The expectation of the duplication becomes the doubeled reduction, 

and thus, the duplication of this action is a negative relation, as the effect of the sequential 

actions is only half of the effects’ sum of the single actions.  

 

 𝐴𝑇ଵ 𝐴𝑇ଶ 𝐴𝑇ଷ 𝐴𝑇ସ 𝐴𝑇ଵ െ ൅ ൅ ~ 𝐴𝑇ଶ ൅ ൅ ~ െ 𝐴𝑇ଷ ൅ ~ െ െ 𝐴𝑇ସ ~ െ െ ൅ 

Table 1: An example of a correlation matrix between action types. 

 

For an action derived from an action type, actions are classified into positively related actions 

(𝐴ା), negatively related actions (𝐴ି), and weakly related actions (𝐴~). Based on Table 1, action 𝑎ଵଵ derived from 𝐴𝑇ଵ classifies actions as follows: 𝑎ଵଷ that affects the same entity as 𝑎ଵଵ, and 𝑎ଵଵ 

as 𝐴ା; 𝑎ଵଶ as 𝐴ି; and all other actions as 𝐴~. 

 

4. UTILIZING CORRELATION IN SOLUTION CONSTRUCTION 

 

After identifying the correlation between the action types, the LAS can classify actions into 

positively, negatively, or weakly correlated actions based on a selected action. Accordingly, 

the metaheuristic algorithm in the HU is adapted to utilize the classification of actions relations. 

In the algorithm’s initial iteration, the algorithm constructs action plans by selecting actions 

and adding them to an action plan. Later, new action plans are formed based on the action plans 

constructed in the previous iterations.  



4.1. Constructing action plans utilizing correlation relations 

 

In the HU, the action plans are constructed in the initial iteration of the algorithm run. A 

solution is constructed by selecting an action at a time. To incorporate the correlation in the 

construction of action plans, several approaches can be adapted as follows: approach (1) that 

classifies actions based on the last added action to an action plan; approach (2) that updates the 

classification of actions after adding a new action to an action plan; approach (3) that classifies 

actions based on all actions in an action plan; approach (4) that updates the actions’ selection 

probability based on the last added action to an action plan; and approach (5) that updates the 

actions’ selection probability based on all actions in an action plan. 

 

4.1.1. Approach (1): Classification of actions based on the last selected action  

 

In correlation approach (1), actions are classified based on the last added action to an action 

plan. Once the first action in the action plan is selected, the selected action classifies actions 

as: 𝐴௔ሾభሿା , 𝐴௔ሾభሿ~  and 𝐴௔ሾభሿି . 𝐴௔ሾభሿା  presents the positively related actions to 𝑎ሾଵሿ, where 𝑎ሾଵሿ presents 

the first selected action in an action plan. Each class is given a probability to select from; higher 

selection probability is given to 𝐴௔ሾభሿା . The lowest selection probability is assigned to 𝐴௔ሾభሿି . 

After selecting the class, an action is selected randomly from it. The probability of selecting an 

action from the class is uniformly distributed. Figure 3a shows an example of the classification 

of actions based on 𝑎ሾଵሿ that is presented as 𝑎ଵ଴ in the example.  

 

Figure 3: An example of selecting actions based on approach (1). 

 

The selection of the third action in the action plan depends on the second selected action; the 

classification of the actions is based on 𝑎ሾଶሿ: 𝐴௔ሾమሿା , 𝐴௔ሾమሿ~  and 𝐴௔ሾమሿି . For example, the selection 

of the third action in Figure 3b is based on the classification of actions by 𝑎ସ. The selection of 

the actions continues until the action plan is formed. 



 

4.1.2. Approaches (2) and (3): Classification of actions based on selected 

actions in an action plan  

 

These approaches differ from approach (1) described in 4.1.1 by using all the selected actions 

in the action plan to classify the actions into classes. At the beginning of the construction of an 

action plan, the previously selected actions classify the actions into the three relationship 

classes. These classes become the classes of the action plan (𝐴௦ା, 𝐴௦~ and 𝐴௦ି ) and are updated 

with each selection of an action.  

 

In correlation approach (2), once the second action is selected, the classes are updated 

according to the classification of actions related to the second selected action. If an action is 

classified as 𝐴௔ሾమሿି , it is moved from 𝐴௦ା to 𝐴௦~, or from 𝐴௦~ to 𝐴௦ି . On the other side, if an action 

is classified as 𝐴௔ሾమሿା , it is moved from 𝐴௦ି  to 𝐴௦~, or from 𝐴௦~ to 𝐴௦ା. For example, in Figure 4, 

actions are classified after selecting the first action, 𝑎ଵ଴, as 𝐴௦ା, 𝐴௦~, and 𝐴௦ି . After selecting the 

second action, 𝑎ସ, 𝑎ଶ and 𝑎ହ are moved from 𝐴௦~ to 𝐴௦ା and from 𝐴௦ି  to 𝐴௦~, respectively, because 

they are classified as positively correlated actions by 𝑎ସ. On the other side, 𝑎଻ is moved from 𝐴௦~ to 𝐴௦ି . Thus, the actions are moved between the classes based on their positive or negative 

relations with the newly selected action.  

 

Figure 4: An example of selecting actions based on approach (2). 

 

Correlation approach (3) is similar to the correlation approach (2), except that actions do not 

leave the negatively correlated actions class (𝐴௦ି ), and do not move to 𝐴~; if an action is 

classified as 𝐴௔ሾ೔ሿି , it is moved from 𝐴௦ା or 𝐴௦~to 𝐴௦ି . An action is moved from 𝐴௦~ to 𝐴௦ା if it is 

classified as 𝐴௔ሾ೔ሿା ; the action is not moved from 𝐴௦ି  to 𝐴௦~ if it is classified as 𝐴௔ሾ೔ሿା . For example, 

in Figure 5, 𝑎ହ remains in 𝐴௦ି  because it has a negative relationship with an action in the action 

plan, 𝑎ଵ଴.  



 

Figure 5: An example of selecting actions based on approach (3). 

 

4.1.3. Approaches (4) and (5): Assigning selection probabilities to actions   

 

In correlation approach (4), the selection probabilities are assigned to actions; instead of 

assigning them to the correlated actions’ classes. Actions’ selection probabilities are updated 

based on the selected action; the uniform selection probabilities of actions are updated based 

on 𝐴௔ሾ೔ሿା  and 𝐴௔ሾ೔ሿି , where 𝑖 presents the last selected action. Actions in 𝐴௔ሾ೔ሿା  get an increase in 

their selection probability, and actions in 𝐴௔ሾ೔ሿି  get a decrease in their selection probability. In 

order to keep the summation of the probabilities of all actions equal to 1, the sum of the changes 

in the selection probabilities of actions in 𝐴௔ሾ೔ሿା  should equal the sum of the changes in the 

selection probabilities of actions belonging to 𝐴௔ሾ೔ሿି .Once an action 𝑎ሾ௜ሿ is selected, the selection 

probability of the actions classified as 𝐴௔ሾ೔ሿି  is halved. Then, ∑ 𝑝௔ೖ௔ೖ∈஺ష  presents the total 

decrease in the probabilities of negatively correlated actions, where 𝑝௔ೖis the selection 

probability of action 𝑎௞. This sum is distributed over actions belonging to 𝐴௔ሾ೔ሿା ; the amount of 

increase of the selection probability of the actions depends on the number of actions that belong 

to 𝐴௔ሾ೔ሿା . For example, actions are selected from 20 actions with a selection probability of 0.05. 

The first selected action classifies four actions as 𝐴௔ሾభሿା  and five actions as 𝐴௔ሾభሿି . The selection 

probability of actions in 𝐴௔ሾభሿି  is decreased to 0.025, and the total decrease in the selection 

probabilities becomes 0.125. Then, the selection probability of actions in 𝐴௔ሾభሿା  is increased to 

0.08125 (= 0.05 ൅ 0.125/4).  

 

Once action 𝑖 ൅ 1 is selected, the selection probabilities are reset to the uniformly distributed 

probability, and then they are updated based on 𝐴௔ሾ೔శభሿା  and 𝐴௔ሾ೔శభሿି . As a result, an action’s 

selection probability is one out of three values: actions belonging to 𝐴௔ሾ೔ሿା  have the highest 



selection probability value, actions belonging to 𝐴௔ሾ೔ሿି  have the lowest selection probability 

value, and the remaining actions have an intermediate selection probability value. 

 

In the correlation approach (5), the actions’ selection probability is not reset to the uniformly 

distributed probability; thus, the selection probability of the actions varies and is not limited to 

three values as in approach (4). 

 

4.2. Implementing correlation in an evolutionary algorithm 

 

One of the realized metaheuristic algorithms in HU is  an evolutionary algorithm. The initial 

algorithm’s iteration starts by constructing solutions. A solution presents an action plan; actions 

are selected randomly to form the action plan. To utilize the correlation when constructing the 

action plans, the action selection is based on one of the correlation approaches described in 

Section 4.1.  

 

The evaluated solutions form a population of the initial iteration. In the subsequent iterations, 

parent solutions are selected and crossover and mutation are used to form new solutions. Either 

type of the crossover can be used, such as 1-point crossover, 2-point crossover or uniform 

crossover (for crossover types see, e.g., Talbi 2009). Among the crossover types, 1-point 

crossover can keep the longest sequence of the correlated actions, mainly if correlation 

approaches (1) or (4) are used. The mutation is used to replace an action by another action. 

This replacement action can be selected based on the described correlation approaches. For 

example, if 𝑎ሾଷሿ is to be replaced, the substitute action is selected based on 𝑎ሾଶሿ in approaches 

(1) and (4), and based on 𝑎ሾଵሿ and 𝑎ሾଶሿ in approaches (2), (3), and (5). 

 

5. EXPERIMENTAL RESULTS AND ANALYSIS 

 

This section compares the correlation approaches defined in Section 4.1 to construct solutions. 

The described experiments use binary variables to illustrate the concept. First, Section 5.1 

defines the correlation based on the correlation definition in Section 3, and then Section 5.2 

compares the correlation approaches.   

 



5.1. Experiment setup for the comparison between the constructions of 

solutions  

 

Constructing action plans in the LAS is simplified to selecting binary variables and forming 

solutions. Two experiments are formulated: the correlation is defined between the variables, 

and the correlation is defined between action types (Sections 5.1.1 and 5.1.2, respectively). The 

experiments’ results are analyzed in Section 5.2. 

 

5.1.1. Experiment defining correlation relations between variables 

 

The number of variables in the experiment is 20, and the length of a solution is selected as five. 

In each iteration, a solution is formed by selecting variables. Selected variables in a solution 

contribute to the value of an objective function (𝑓) to be maximized. The objective function is 

presented in the Appendix. The relation between the variables can be studied as the discussed 

relation between actions in Section 3.1. A positive relation is defined if 𝑓൫𝑥௜ , 𝑥௝൯ is greater than 𝑓ሺ𝑥௜ሻ ൅ 𝑓൫𝑥௝൯. The complete correlation matrix between the variables is shown in Table 2 in 

the Appendix. Each row in the correlation matrix presents the effect of a selected variable on 

the value of the objective function. For example, 𝑥଺ after 𝑥ଵ decreases the value of the objective 

function, and 𝑥ଷ after 𝑥ଵ increases this value. The selection probability of positively, weakly, 

and negatively correlated actions was set to 0.7, 0.2, and 0.1, respectively. 

 

The experiment compares a random selection of variables with the correlation approaches 

described in Section 4.1. The experiment includes two parts: (a) recording the maximum value 

of the objective function found in 5, 10, 20, and 30 iterations; and (b) recording the number of 

iterations required to find a solution having at least an objective function value of 25, 28, and 

31. Each experiment setup is repeated for 100 times to perform statistical analysis afterwards.  

 

5.1.2. Experiment defining correlation relations between action types 

 

In this experiment, four action types are defined. Five variables belong to the same action type, 

e.g., 𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ, and 𝑥ହ belong to 𝐴𝑇ଵ. Variables 𝑥ଵ, 𝑥଺, 𝑥ଵଵ, and 𝑥ଵ଺ affect the same entity, 

and the relation between the action types is defined based on the relations between the pairs of 

variables affecting the same entity. The correlation relation between variables is presented in 



Table 2 in the Appendix, and the correlation matrix between the action types is summarized in 

Table 1. The relation between 𝐴𝑇ଵ followed by 𝐴𝑇ଶ was defined based on the relations 

between variables derived from them that affect the same entities: 𝑥ଵ followed by 𝑥଺, 𝑥ଶ 

followed by 𝑥଻, 𝑥ଷ followed by 𝑥଼, 𝑥ସ followed by 𝑥ଽ, and 𝑥ହ followed by 𝑥ଵ଴. Four of these 

pairs have a positive relation; hence, the relation between 𝐴𝑇ଵ followed by 𝐴𝑇ଶ is a positive 

one. 

 

As in Section 5.1.1, the experiment involves selecting five variables to construct a solution, 

and the two parts of the experiment have been conducted. 

 

5.2. Experiment results’ analysis 

 

Figure 6 shows a sample of the experiments’ results described in Section 5.1.1. The sample 

shows the results of (a) recording the maximum objective function value in 20 iterations, and 

(b) recording the number of iterations to find a solution with at least 28 as a value of the 

objective function. It is seen that the correlation approaches can find better solutions within the 

specified number of iterations and can find the desired solution faster than the random selection 

of variables.  

 

(a) 

 

(b) 

Figure 6: Box plots of the comparison between variables’ selection in the experiment described in Section 5.1.1 

regarding (a) maximum objective value found in 20 iterations for 100 runs, and (b) the number of iterations needed 

to find a solution having an objective value of at least 28 in 100 runs. 

 

In order to define the significance of the selection method, analysis of variance (ANOVA) has 

been performed. The 𝑝-values of the test are 0.000 for both experiments’ parts in Figure 6. 

Fisher’s critical distance (CD) in Figure 7 indicates that the random selection of variables 

differs significantly from the correlation approaches. The correlation approaches (3) and (4) 
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have the best performance and do not differ significantly in both experiment’s parts (a) and (b). 

Based on the selection approaches’ performance, the approaches can be ranked as correlation 

approach (3) and correlation approach (4) as the best approaches, followed by correlation 

approach (2), correlation approach (1), and correlation approach (5), and random selection as 

the worst performance in both experiments’ parts.  

 

 

(a) 

 

(b) 

Figure 7: Comparison between variables’ selection in the experiment described in Section 5.1.1 using Fisher’s 

test regarding (a) maximum objective value found in 20 iterations for 100 runs, and (b) the number of iterations 

needed to find a solution having an objective value of at least 28 in 100 runs. 

 

Figure 8 compares the experiment results considering the correlation relation definition for the 

action types (the experiment in Section 5.1.2). The ANOVA reveals that the methods differ 

significantly; the 𝑝-values are 0.000 for both experiments in Figure 8. Figure 9 indicates the 

significantly different selection approach in both experiment’s parts. Based on the approaches’ 

performance, the selection approaches are ranked as correlation approach (3) and correlation 

approach (2) as the best approaches, followed by correlation approach (1), correlation approach 

(5), correlation approach (4), and random selection. For the other experiment setups, the 

conclusions were similar to the one from the illustrated experiments’ setup. 

 

 

(a) 

 

(b) 

Figure 8: Box plots of the comparison between variables’ selection in the experiment described in Section 5.1.2 

regarding (a) maximum objective value found in 20 iterations for 100 runs, and (b) the number of iterations needed 

to find a solution having an objective value of at least 28 in 100 runs. 

Variable selection

O
b
je

c
ti
v
e

 f
u
n
c
ti
o

n
 v

a
lu

e

(5)(4)(3)(2)(1)Random

35

30

25

20

15

Variable selection

N
u
m

b
e

r 
o

f 
it
e

ra
ti
o

n
s

(5)(4)(3)(2)(1)Random

1600

1400

1200

1000

800

600

400

200

0



 

 

(a) 

 

(b) 

Figure 9: Comparison between variables’ selection in the experiment described in Section 5.1.2  using Fisher’s 

test regarding (a) maximum objective value found in 20 iterations for 100 runs, and (b) the number of iterations 

needed to find a solution having an objective value of at least 28 in 100 runs.  

 

From both experiments, the correlation approach (3) had the best performance. This approach 

located good quality solutions within the lowest number of iterations in both experiments. It 

classifies variables based on their relation to the already selected variables in the solution and 

reduces the probability of selecting actions classified as 𝐴ି by keeping them in the 𝐴௦ି . In 

contrast, correlation approach (1) considers the last selected action only for the determination 

of the actions’ classification. Actions in 𝐴௦ି  are moved to 𝐴௦~ in correlation approach (2) if a 

selected action classifies them as 𝐴ା. Both approaches (4) and (5) assign a distinguished 

selection probability, which can be computationally more demanding; thus, the recommended 

approach to utilize in the real-world case is the correlation approach (3).  

 

The experiments’ results revealed that the generalized correlation definition between action 

types differs significantly from the random selection. The definition of correlation between 

action types becomes more practical when more actions are considered in the search space; 

thus, utilizing correlation (3) based on the correlation relation defined between action types is 

recommended for real-world case studies. 

 

6. CONCLUSION AND OUTLOOK 

 

This work defines correlation as domain-specific information that aims to incorporate 

knowledge about the optimization problem in a logistics distribution network. The correlation 

presents a relation between two subsequent actions and their impact on the performance of the 

logistics distribution network. Five approaches to exploit correlation were discussed. The 

approaches were used to form solutions, and their performance was evaluated regarding the 

quality of formed solutions and the number of iterations to find a good solution. The defined 



correlation approaches found better solutions within fewer iterations compared to random 

selection. Additionally, the correlation was defined between action types, and the experiments’ 

result showed that the generalization of the correlation definition found good solutions. 

Summarizing, correlation approaches constructed good solutions; thus, it is promising that 

optimization algorithms can benefit from utilizing them.  

 

The proposed approach aims to guide the optimization algorithm to locate promising solutions 

within a lower number of evaluations while solving real-world problems; thus, the authors 

investigate the recommended approach, correlation approach (3), to optimize a logistics 

distribution network using the evolutionary algorithm and compare it to the results in this work 

in their further research.  
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Appendix 

The objective function value for the experiment used in Section 5, where 𝑥௜ଶ presents the 

duplication of 𝑥௜: 𝑓 ൌ 12െ 𝑥ଵ ൅ 𝑥ଶ െ 𝑥ଷ െ 2𝑥ସ ൅ 𝑥ହ ൅ 2𝑥଺ െ 2𝑥଻ ൅ 𝑥଼ ൅ 𝑥ଽ ൅ 𝑥ଵ଴ ൅ 𝑥ଵଵ ൅ 2𝑥ଵଷ ൅ 𝑥ଵସ ൅ 𝑥ଵହെ 𝑥ଵ଺ ൅ 𝑥ଵ଻ ൅ 𝑥ଵ଼ െ 𝑥ଵଽ ൅ 2𝑥ଶ଴ ൅ 𝑥ଶ𝑥଻ ൅ 6𝑥ଷ𝑥଼ ൅ 7𝑥ହ𝑥ଵ଴ ൅ 5𝑥ଵ𝑥ଵଵ ൅ 3𝑥ଶ𝑥ଵଶ൅ 7𝑥ଷ𝑥ଵଷ െ 𝑥ସ𝑥ଵସ ൅ 3𝑥ହ𝑥ଵହ ൅ 2𝑥଺𝑥ଵ଺ െ 7𝑥଻𝑥ଵ଻ െ 8𝑥଼𝑥ଵ଼ െ 3𝑥ଽ𝑥ଵଽ െ 3𝑥ଵ଴𝑥ଶ଴െ 5𝑥ଵଵ𝑥ଵ଺ െ 4𝑥ଵଶ𝑥ଵ଻ െ 𝑥ଵଷ𝑥ଵ଼ െ 6𝑥ଵସ𝑥ଵଽ െ 2𝑥ଵହ𝑥ଶ଴ െ 3𝑥ଶ𝑥଼ ൅ 2𝑥ଷ𝑥ଵସ ൅ 𝑥ସ𝑥ଵ଻െ 𝑥ହ𝑥ଵଶ ൅ 𝑥଺𝑥ଵ଼ ൅ 𝑥଻𝑥ଵଽ െ 𝑥଼𝑥ଶ଴ ൅ 𝑥ଷ𝑥ଽ ൅ 𝑥ଵ଴𝑥ଵଵ െ 𝑥଻𝑥ଵଵ ൅ 𝑥ଵଶ𝑥ଵ଺ ൅ 𝑥ଵ𝑥ଵଷ െ 𝑥ଶ𝑥ଵସെ 2𝑥ସ𝑥ଵହ െ 3𝑥ହ𝑥ଵ଺ െ 𝑥ଽ𝑥ଵ଻ ൅ 𝑥ଵ଴𝑥ଵ଼ െ 2𝑥ଵହ𝑥ଵଽ െ 𝑥ଵଷ𝑥ଶ଴ െ 3𝑥଺𝑥ଽ ൅ 𝑥ଵ𝑥ଷ െ 𝑥ଽ𝑥ଵସെ 𝑥ଷ𝑥ଵଷ െ 3𝑥ଵଶ െ 4𝑥ଶଶ െ 2𝑥ଷଶ െ 5𝑥ସଶ െ 𝑥ହଶ ൅ 2𝑥଺ଶ ൅ 𝑥଻ଶ െ 𝑥ଶ଼ ൅ 2𝑥ଽଶ ൅ 4𝑥ଵ଴ଶ െ 2𝑥ଵଵଶെ 3𝑥ଵଶଶ െ 𝑥ଵଷଶ െ 2𝑥ଵସଶ ൅ 2𝑥ଵହଶ ൅ 4𝑥ଵ଺ଶ ൅ 2𝑥ଵ଻ଶ ൅ 3𝑥ଵଶ଼ ൅ 6𝑥ଵଽଶ ൅ 𝑥ଶ଴ଶ  
 

 𝑥ଵ 𝑥ଶ 𝑥ଷ 𝑥ସ 𝑥ହ 𝑥଺ 𝑥଻ 𝑥଼ 𝑥ଽ 𝑥ଵ଴ 𝑥ଵଵ 𝑥ଵଶ 𝑥ଵଷ 𝑥ଵସ 𝑥ଵହ 𝑥ଵ଺ 𝑥ଵ଻ 𝑥ଵ଼ 𝑥ଵଽ 𝑥ଶ଴ 𝑥ଵ െ ~ ൅ ~ ~ ~ ~ ~ ~ ~ ൅ ~ ൅ ~ ~ ~ ~ ~ ~ ~ 𝑥ଶ ~ െ ~ ~ ~ ~ ൅ െ ~ ~ ~ ൅ ~ െ ~ ~ ~ ~ ~ ~ 𝑥ଷ ൅ ~ െ ~ ~ ~ ~ ൅ ൅ ~ ~ ~ ൅ ൅ ~ ~ ~ ~ ~ ~ 𝑥ସ ~ ~ ~ െ ~ ~ ~ ~ ൅ ~ ~ ~ ~ െ െ ~ ൅ ~ ~ ~ 𝑥ହ ~ ~ ~ ~ െ ~ ~ ~ ~ ൅ ~ െ ~ ~ ൅ െ ~ ~ ~ ~ 𝑥଺ ~ ~ ~ ~ ~ ~ ~ ~ െ ~ ~ ~ ~ ~ ~ ൅ ~ ൅ ~ ~ 𝑥଻ ~ ൅ ~ ~ ~ ~ ൅ ~ ~ ~ െ ~ ~ ~ ~ ~ െ ~ ൅ ~ 𝑥଼ ~ െ ൅ ~ ~ ~ ~ െ ~ ~ ~ ~ ~ ~ ~ ~ ~ െ ~ െ 𝑥ଽ ~ ~ ൅ ൅ ~ െ ~ ~ ൅ ~ ~ ~ ~ െ ~ ~ െ ~ െ ~ 𝑥ଵ଴ ~ ~ ~ ~ ൅ ~ ~ ~ ~ ൅ ൅ ~ ~ ~ ~ ~ ~ ൅ ~ െ 𝑥ଵଵ ൅ ~ ~ ~ ~ ~ െ ~ ~ ൅ െ ~ ~ ~ ~ െ ~ ~ ~ ~ 𝑥ଵଶ ~ ൅ ~ ~ െ ~ ~ ~ ~ ~ ~ െ ~ ~ ~ ൅ െ ~ ~ ~ 𝑥ଵଷ ൅ ~ ൅ ~ ~ ~ ~ ~ ~ ~ ~ ~ െ ~ ~ ~ ~ െ ~ െ 𝑥ଵସ ~ െ ൅ ൅ ~ ~ ~ ~ െ ~ ~ ~ ~ െ ~ ~ ~ ~ െ ~ 𝑥ଵହ ~ ~ ~ െ ൅ ~ ~ ~ ~ ~ ~ ~ ~ ~ ൅ ~ ~ ~ െ െ 𝑥ଵ଺ ~ ~ ~ ~ െ ൅ ~ ~ ~ ~ െ ൅ ~ ~ ~ ൅ ~ ~ ~ ~ 𝑥ଵ଻ ~ ~ ~ ൅ ~ ~ െ ~ െ ~ ~ െ ~ ~ ~ ~ ൅ ~ ~ ~ 𝑥ଵ଼ ~ ~ ~ ~ ~ ൅ ~ െ ~ ൅ ~ ~ െ ~ ~ ~ ~ ൅ ~ ~ 𝑥ଵଽ ~ ~ ~ ~ ~ ~ ൅ ~ െ ~ ~ ~ ~ െ െ ~ ~ ~ ൅ ~ 𝑥ଶ଴ ~ ~ ~ ~ ~ ~ ~ െ ~ െ ~ ~ െ ~ െ ~ ~ ~ ~ െ 

Table 2: Correlation matrix for the variables in the experiments in Sections 5.1.1 and 5.1.2.  


