
MIC/MAEB 2017 id-1

Barcelona, July 4-7, 2017

Combining a Discrete-event Simulation Model of a
Logistics Network with Deep Reinforcement Learning

 Markus Rabe1, Felix Dross2, Alexander Wuttke3

1, 3 Technical University Dortmund
Department IT in Production and Logistics

Leonhard-Euler-Straße 5, 44227 Dortmund, Germany
markus.rabe@tu-dortmund.de, alexander2.wuttke@tu-dortmund.de

2 Technical University Dortmund
Graduate School of Logistics

Leonhard-Euler-Straße 5, 44227 Dortmund, Germany
felix.dross@tu-dortmund.de

Abstract

This paper presents a method to combine a discrete-event simulation model of a logistics network
with a deep reinforcement learning agent. The agent applies different actions to the logistics network
in order to learn a strategy to improve the cost structure and the performance of the logistics network.
The return for the agent is derived from the costs and the performance of the logistics network which
is measured in terms of logistics costs and β service level. Possible actions comprise the relocation
of inventory and the adjustment of transport relations. The authors developed a method to represent
the state of the simulation model with an image generated from the simulation input data and used
a well-known deep Q-learning algorithm with a convolutional neural network to train the agent.

1 Introduction

Large logistics networks are complex systems that are very hard to manage. To cope with the complexity
of logistics networks, several specific performance measurement systems with key performance indica-
tors (KPIs) have been developed to provide managers with the background information they need to
improve their area of accountability [1, 4, 5]. Besides specific KPIs, the systems usually also provide
catalogues of possible actions to ease the decisions about the right corrective actions in the logistics
network. Examples for such actions could be the relocation of stock from one site to another or the
adjustment of transport relations within the network. Unfortunately though, the effects of all the actions
in the catalogues and their interdependencies are very hard to predict for the managers. In many situa-
tions, they are overwhelmed with all the possibilities and uncertain about the right actions to take. There-
fore, especially trading businesses are demanding for better solutions to plan their actions in the logistics
network. For this research, the authors are cooperating with an international trading company with over
100 warehouses and an inventory of around 150,000 items on permanent stock.

To solve the described problem, the authors have previously proposed the design of a decision sup-
port system which uses a discrete-event simulation (DES) to predict the consequences of actions in the
logistics network [6]. In order to offer a realistic prediction, special methods to measure real world data
warehouse KPIs on the simulation output data have been developed [20]. The architecture of the system
includes a data-driven DES model with an underlying database, so possible actions can be applied au-
tomatically to the simulation model in the form of SQL updates. Although already automated, the solu-
tion space of all possible combinations of actions is too large to be searched extensively. Therefore, the
authors proposed to use a meta-heuristic which automatically applies the possible actions to the simula-
tion model and finds the most promising action sets. This approach has previously been described as a
simheuristic [10]. A simheuristic framework for the system has been extensively described in [6].

Continuing the research, the authors propose to use a reinforcement learning agent instead of a clas-
sical meta-heuristic. Reinforcement learning in general is targeted towards enabling an agent to learn
what to do - how to map situations to actions - so as to maximize a numerical reward signal [27]. Using
reinforcement learning, the system is now designed to use its idle time to experiment with the DES
model and sequentially learn the most promising sequence of actions. The authors already extensively

765

id-2 MIC/MAEB 2017

Barcelona, July 4-7, 2017

described the software architecture for the realization of such a system in [19]. Since then, a correspond-
ing prototype has been developed. Although the general idea is straightforward, the biggest challenge is
to find the appropriate reinforcement learning method and a state representation for the simulation model
to train a reinforcement learning agent with. The approach presented in this paper is inspired by recent
research regarding the Arcade Learning Environment (ALE) [2] and deep reinforcement learning.

The ALE provides an interface to hundreds of Atari 2600 game environments, each one different
and designed to be a challenge for humans [2]. It therefore offers an environment for testing reinforce-
ment learning agents. Breakthroughs regarding the development of an agent that teaches itself to play
classic Atari games in the ALE by looking at pixels and learning actions that increase the game score
were presented by Mnih et al. in 2013 [16]. Mnih et al. showed that their algorithm outperformed all
previous approaches on six of seven tested games and surpassed a human expert on three of them. Fol-
lowing up on these results, Mnih et al. published a widely recognized article in 2015, where their deep
reinforcement learning agent was able to surpass the performance of all previously presented algorithms
and achieved a level comparable to that of a professional human games tester across a set of 49 games
[17]. The research results were a remarkable example of the progress being made in artificial intelligence
[23]. The approach of Mnih et al. combined reinforcement learning with a class of artificial neural net-
works known as deep neural networks, therefore it is called deep reinforcement learning [7, 15, 17]. The
concrete neural network used by Mnih et al. is a convolutional neural network which is trained with a
variant of Q-learning, a famous reinforcement learning approach [31]. The input to the network is a state
representation and the outputs are estimates of the Q-values for each action. Mnih et al. therefore referred
to the approach as a deep Q-network (DQN) [17]. Most interesting for the research presented in this
paper is the fact that Mnih et al. showed the first artificial agent that was capable of learning to excel at
a diverse array of challenging tasks, using the same algorithm, network architecture and hyperparame-
ters, receiving only the pixels and the game score as inputs.

Inspired by these breakthroughs, the authors decided to design a graphical state representation for
the problem described in this paper and let the agent presented by Mnih et al. try to solve the complex
task of learning the most promising action sets. The system presented here can automatically apply
actions to the database of the discrete-event simulation model and then obtain a reward by running and
evaluating the simulation. The graphical state representation is generated from the simulation input data
in the database. Finally, after some training, the system should be able to recommend the best action
combinations for different logistics network situations.

First promising experiments have been conducted with a small simulation model of a segment of a
larger logistics network. On the following pages, the authors present their current state of the research
and some preliminary results.

The paper is structured as follows. Section 2 provides an overview of related work. Section 3 de-
scribes the general working principle of the system. Section 4 gives a detailed description of the current
state representation, the actions used and the reward signal for the reinforcement learning agent. Section
5 provides some preliminary experimentation results. Section 6 closes the paper with a conclusion and
an outlook.

2 Related Work

In order to get a complete understanding of the challenges faced in the research described here, and the
setup of the solution approach, the reader is kindly referred to previous papers of the authors [6, 19, 20].
In this paper, the focus is entirely on the coupling of a discrete-event simulation model of a logistics
network with a deep reinforcement learning algorithm, as briefly explained above.

2.1 The Simulation Software SimChain
The simulation tool used for the prototypical implementation of the system described here is called
SimChain [8, 25]. It consists of generic building blocks for a logistics network simulation in Siemens
Plant Simulation [24] and a corresponding data model stored in a MySQL database. The data model
consists of 50 tables and holds the complete parameterization of the generic building blocks, including
their placement on the map and therefore the structure of the network. The actual simulation model is
dynamically instantiated from the data model at run time. Figure 1 illustrates the working principle.

Two design principles of SimChain were of importance for this research. First, since all modelling

766

MIC/MAEB 2017 id-3

Barcelona, July 4-7, 2017

is done with the parameters in the database, it offers a pure data-level interface to the simulation model.
Changes in the simulation model can be realized by changing entries in the database. This allows to
write software which can automatically apply changes to the simulation model. Second, it not only sim-
ulates the material flow, but also the information flow within the logistics network. The system load can
be expressed by the customer orders coming into the system. The orders are processed through the sys-
tem from customers to sites to suppliers, and the material flow is simulated from suppliers to sites to
customers. It is therefore possible to change the logistics system configuration, e.g. the frequency of
transports, while keeping the customer orders equal, in order to compare the performance of the two
resulting system configurations. After each simulation run, the simulation output data and statistics are
written to specific tables in the MySQL database, and from there they can be consumed by the control-
ling software. More details about this mechanism can be found in [19].

Figure 1: Working principle of the SimChain simulation software

SimChain can generate diverse simulation output data and statistics. The work presented in this
paper uses the logistics costs and the performance of the logistics system. The logistics costs are calcu-
lated by summing up the inventory costs, the transportation costs and the handling costs. The perfor-
mance of the logistics system is measured with the β service level. The β service level is a quantity-
oriented performance measure. It expresses the percentage of customer orders which could be fulfilled
without delay within a given timeframe [21]. It is an intuitive measure of the logistics system perfor-
mance as it is perceived from a customer perspective. The formulae is given in (1).

orders customer of amount total

orders customer delayed
� 1E (1)

2.2 The Arcade Learning Environment
The Atari 2600 is a home video game console developed in 1977 and sold for over a decade [18]. A
single game screen is 210 x 160 pixels with a 128-colour palette (RGB). 18 actions can be input to the
game via a digital joystick: three positions of the joystick for each axis, plus a single button [2]. Screen-
shots of typical game screens are shown in figure 2. The ALE is built on top of Stella [26], an open-
source Atari 2600 emulator, and adds a game-handling layer which transforms each game into a standard
reinforcement learning problem. Through the ALE, researchers have access to several dozen games
through a single common interface. It is a software framework designed to make it easy to develop
agents that play arbitrary Atari 2600 games and therefore offers a method to evaluate the development
of general, domain-independent artificial intelligence technology [2]. Its source-code is publicly avail-
able at [29].

Figure 2: Screenshots of the Atari games "Pitfall!" and "Space Invaders" [2]

2.3 Playing Atari with Deep Reinforcement Learning
Creating a single algorithm that would be able to develop a wide range of competencies on a varied
range of challenging tasks is a central goal of general artificial intelligence [14, 17]. To use reinforce-
ment learning successfully in situations approaching real-world complexity, agents are confronted with
a difficult task: they must derive efficient representations of the environment from high-dimensional

SimChain model with
generic building blocks

MySQL database with
model parameters

Dynamically intantiated
simulation model

767

id-4 MIC/MAEB 2017

Barcelona, July 4-7, 2017

sensory inputs, and use these to generalize past experience to new situations [17]. Mnih et al. approached
this challenge by creating an algorithm called DQN [16, 17]. They tested their DQN agent on the ALE
and outperformed the best existing reinforcement learning methods on 43 of the 49 games without in-
corporating any of the additional prior knowledge about the Atari 2006 games used by other approaches.

Reinforcement learning in general considers tasks in which an agent interacts with an environment
through a sequence of observations, actions and rewards. The general principle is illustrated in figure 3.

Figure 3: General principle of reinforcement learning

More specifically, the agent interacts with the environment at each of a sequence of discrete time
steps, 𝑡 = 0, 1, 2, 3, … . At each time step 𝑡, the agent receives some representation of the environment's
state 𝑠௧ ∈ 𝑆, where 𝑆 is the set of possible states. On the basis of 𝑠௧, the agent selects an action 𝑎௧ ∈
𝐴(𝑠௧), where 𝐴(𝑠௧) is the set of actions available in state 𝑠௧. One time step later, in part as a consequence
of its action, the agent receives a numerical reward 𝑟௧ାଵ. The goal of the agent is to select actions in a
fashion that maximizes its cumulative future reward, also called return, 𝑅௧. At each time step 𝑡, the agent
implements a mapping from states to probabilities of selecting each possible action. This mapping is
called the agent's policy and is denoted 𝜋௧, where 𝜋௧(𝑠, 𝑎) is the probability that 𝑎௧ = 𝑎 if 𝑠௧ = 𝑠. Re-
inforcement learning methods specify how the agent changes its policy as a result of its experience [27].

Almost all reinforcement learning algorithms are based on estimating value functions [27]. Q-learn-
ing [31] is based on the Q-function, a function of state-action pairs that expresses how good it is for the
agent to perform a given action in a given state regarding the expected return. More formally, the value
of taking an action 𝑎 in state 𝑠 under a policy 𝜋, denoted 𝑄గ(𝑠, 𝑎), expresses the expected return starting
from 𝑠, taking the action 𝑎, and thereafter following policy 𝜋.

For small problems, the Q-function can be stored as a table, but for larger problems this table quickly
gets too large to be stored in memory. Moreover, the time and data needed to fill the table accurately
would be too high. In many tasks to which one would like to apply reinforcement learning, most states
encountered will never have been experienced exactly before. The only way to learn anything at all on
these tasks is to generalize from previously experienced states to ones that have never been seen before.
Therefore, for larger problems, the key issue is that of generalization and some sort of function approx-
imation is generally needed [27].

Advances in deep neural networks [3, 9, 11] in which several layers of nodes are used to build up
progressively more abstract representations of data, have made it possible for artificial neural networks
to learn concepts such as object categories directly from raw sensory data [17]. In order to approximate
the Q-function, Mnih et al. used one particularly successful architecture of such deep neural networks,
a convolutional neural network (CNN) [13]. A CNN uses hierarchical layers of tiled convolutional filters
to mimic the effects of receptive fields [17].

Furthermore, they addressed known instabilities of using a nonlinear function approximator such as
a neural network to represent the Q-function [30] with a novel variant of Q-learning, which uses two
key ideas. First, they used a biologically inspired mechanism termed experience replay that randomizes
over the training data for the neural network, thereby removing correlations in the observation sequences
and smoothing over changes in the data distribution. Second, they used an iterative update that adjusts
the action-values (Q) towards target values that are only periodically updated, thereby reducing correla-
tions with the target. For details about these improvements see [17].

When using a neural network to approximate the Q-function, there are several possible ways to
implement the architecture of the neural network. Because the Q-function maps state–action pairs to
scalar estimates of their Q-value, some previous approaches used the state and the action as inputs to
the neural network [12, 22]. The main drawback of such architectures is that a separate forward pass is
required to compute the Q-value of each action, resulting in a cost that scales linearly with the number
of actions [17]. Mnih et al. instead used an architecture in which there is a separate output unit for each
possible action, and only the state representation is an input to the neural network. The outputs corre-
spond to the predicted Q-values of the individual actions for the input state. The main advantage of this
type of architecture is the ability to compute Q-values for all possible actions in a given state with only

Agent Environment

Observation

Action

Reward

768

MIC/MAEB 2017 id-5

Barcelona, July 4-7, 2017

a single forward pass through the neural network [16, 17].
Regarding the input to the CNN, Mnih et al. applied a preprocessing to the Atari 2600 frames, be-

cause working directly with the raw images would have required too much computation and memory
utilization in their case. They extracted the Y channel, the luminance, from the RGB frame and rescaled
it to a size of 84 x 84 pixels [16, 17]. They stacked 4 of those grayscale images, so that in total the input
to their neural network consisted of an 84 x 84 x 4 matrix.

In the CNN, the first hidden layer convolves 32 filters of 8 x 8 with stride 4 with the input image
and applies a rectifier nonlinearity. The second hidden layer convolves 64 filters of 4 x 4 with stride 2,
again followed by a rectifier nonlinearity. This is followed by a third convolutional layer that convolves
64 filters of 3 x 3 with stride 1 followed by a rectifier. The final hidden layer is fully-connected and
consists of 512 rectifier units. The output layer is a fully-connected linear layer with a single output for
each action. The number of actions varied between 4 and 18 depending on the game [17].

Regarding the reward signal, Mnih et al. clipped all positive rewards at 1 and all negative rewards
at -1, leaving 0 unchanged, since the scale of scores varies greatly from game to game [17].

To sum up, Mnih et al. successfully demonstrated that a single architecture can successfully learn
control policies in a range of different environments receiving only the pixels and the game scores as
inputs. They were using the same algorithm, network architecture and hyperparameters for different
games. The games in which DQN exceled are extremely varied in their nature, from side-scrolling shoot-
ers (River Raid) to boxing games (Boxing) and three-dimensional car-racing games (Enduro).

3 Architecture and General Working Principle of the System

The general working principle of the system presented in this paper is illustrated in figure 4. Everything
except the discrete-event simulation software has been implemented in the Python programming lan-
guage. As mentioned in section 2.1, the discrete-event simulation of the logistics network is realized
with SimChain, which is connected to a MySQL database to store the data model. The implementation
of the DQN described in 2.3 has been built with the Python API for TensorFlow [28], an open source
software library for numerical computations using data flow graphs.

In order to automatically apply actions to the discrete-event simulation model, a concept to generate
specific actions from generic action types has been created. Each generic action type corresponds to a
Python method with parameters. The parameterization of the method creates the specific action. Within
the method, diverse SQL statements can be performed to change different tables of the MySQL database.

A model generation tool has been implemented which can generate data models for SimChain from
the raw data provided by the cooperating company. A filter can generate data models depending on a
specified amount of stock-keeping units (SKU). For the research presented here, an artificially created
simulation model with 30 SKU, 5 sites, 3 suppliers, 103 customers, and 176 orders is used. The simula-
tion horizon is always one year and the simulation time for one simulation run is approximately 10-15
seconds. Currently, the random number stream is always the same for each simulation run. Therefore,
the presented model is in fact a deterministic model. For the future it is planned to run multiple replica-
tions with different random numbers for statistical correctness.

An action is actually a change in the configuration of the logistics system, while the system load –
the customer orders – stays the same. Therefore, each simulation run after the application of an action
evaluates how well or badly the new system configuration can handle the system load. The quality of a
logistics system configuration can be expressed by different KPIs, as briefly mentioned in the introduc-
tion. Ultimately, a weighted sum of the KPIs would be the ideal measurement of the configuration qual-
ity. For this research, the authors followed a more simplistic approach, where the quality of a configu-
ration is measured by the change in costs and performance compared to the initial configuration.

Because the number of possible actions depends on the current state of the system, the number of
possible actions varies from state to state. Therefore, a method to assign an index to each action has
been developed. First, the system evaluates the number of all possible actions, depending on the generic
action types available. Second, a specific action index is assigned to each action, corresponding to a
specific outlet of the CNN. In the current implementation, 150 possible actions are tested.

After an action is applied, the simulation model is instantiated and the simulation is run. The reward
calculation generates the reward signal from the simulation output data by generating a scalar reward
signal using the changes in costs and performance. The reward signal is then routed back to the DQN.

769

id-6 MIC/MAEB 2017

Barcelona, July 4-7, 2017

Figure 4: General working principle of the combination of the discrete-event simu-
lation with the DQN algorithm. Convolutional network graphic adopted from [17].

The feature extraction selects features from different tables in the MySQL database in order to ex-
press the logistics system configuration, or the state of the system, as an image. The general idea behind
the design of the state representation as an image is to profit from further upcoming research regarding
the development of domain-independent agents. The image is designed to look similar to an Atari game
screen in order to make the problem accessible for various agents.

4 State Representation, Actions and Reward Signal

Clearly, the performance of the overall system described here heavily depends on the quality of the state
representation. The authors aimed to display necessary information as structured as possible, since a
CNN excels at identifying structures in images. Furthermore, the state representation should also scale
for larger logistics network simulations. Although the image is eventually converted to a grayscale im-
age, i.e. a 2-dimensional matrix, as described in 2.1, the authors decided to create a colored state image,
i.e. a 3-dimensional matrix, to make the state representation more readable for humans. This approach
should only be used for the design phase of the system for research purposes, due to its computational
overhead and the performance requirements in a production system.

Since the agent should learn a mapping from states to actions, the state representation should encode
information to conclude from states to actions. E.g., if the agent should learn to make a decision regard-
ing the inventory, useful information to make such a decision, e.g. inventory levels and customer de-
mands, should be included in the state representation. For actions regarding e.g. machines, other infor-
mation might be needed in the state representation. Thus, the information needed in the state represen-
tation heavily depends on the generic action types in the system. Consequently, the features which have
to be selected from the MySQL database can be derived from the action types used.

The generic action type which is currently implemented in the system is illustrated in figure 5. The
problem which this action type addresses is the classical logistics problem regarding whether it is better
to keep an SKU on stock (and to replenish it periodically from a supplier) or to forward the SKU on
demand from other sites in the logistics network. The example illustrates how complex an action type
can get. As the reader can see in figure 5, the action type requires changes in the database tables for the
transport relations, the site-SKU relationships and the supplier-site relationships. Furthermore, an action
type can also include logic, e.g. the search for other sites in the scenario that are currently holding stock.
Therefore, as can be seen in figure 5 on the right side, the replenishment from the supplier at site 2 has
been replaced with two transport relations to the other sites in the scenario, site 1 and site 3, with a
supplier split, not with only one single connection to one of these sites.

No Action
Action 001
Action 002
Action 003
Action 004
Action 005
Action 006
Action 007
Action 008
Action 009
Action 010
Action 011
Action 012
Action 013
Action 014
Action 015
…
Action 150

Agent

Action

(SQL)

Performs

Simulates Action

Feature Extraction

O
bs

er
ve

s
S

ta
te

Reward Calculation

C
ol

le
ct

s
R

ew
ar

d

770

MIC/MAEB 2017 id-7

Barcelona, July 4-7, 2017

Figure 5: Currently implemented action type, illustrated as an action for one SKU

Figure 5 also demonstrates the important difference between a specific action and an action type.
An action type is the generic description of the changes that need to be made in the data model of the
simulation. A specific action describes the concrete changes that need to be done in the data model.

The currently implemented action type has the signature get_replenish-
ment_from_other_sites(sku, site). It requires two parameters, SKU and site, to result in
a specific action. Since there are currently 30 SKU and 5 sites in the simulation model, and the action
type is theoretically possible for each SKU at each site, this results in 150 possible specific actions. In
addition, there is the artificial specific action "No Action", which leads to 151 outlets for the CNN
described above.

In order to address the requirements regarding the structuredness and the scalability of the state
representation, the state image is built from different image segments. Each segment corresponds to a
segment type, similar to the previously explained relationship between actions and action types. The
size of the specific segments is fixed, which helps to keep the resulting image symmetric. This should
help the CNN to identify patterns within the data. The actual segment size is derived from the size of
the largest segment type. Figure 6 shows the two segment types used in the state representation and
examples of segments. Currently, the transport relation segment type is the largest and, therefore, deter-
mines the size of the other segments. The transport relation segment type essentially symbolizes a clas-
sical transport matrix. Its size is determined by the locations in the logistics network. The logistics net-
work in the research configuration has 8 locations (5 sites and 3 suppliers), consequently the size is 8 x
8 pixels.

The second segment type, the SKU information type, holds information for each SKU, so one seg-
ment is generated for each SKU in the logistics network. The first information extracted from the data-
base is whether a site is keeping the respective SKU on stock or not. Green indicates that the corre-
sponding site is stock-keeping. Blue means that the SKU is ordered on demand from other sites, and red
means that the SKU is not available at the site at all. Furthermore, some numerical values are extracted
for each SKU, such as the initial stock at each site, the amount of customers for the SKU at each site,
the amount of orders for the SKU at the location, the total demand for the SKU at the location and the
minimum replenishment size for the SKU at the location. Numerical values are currently expressed as
RGB colors, covering a range of 256 x 256 x 256 = 16777216 values. Unfortunately, in the current
example, the numerical values are so low that all the pixels look black. In fact, many of the pixels are
dark gray. While this can be confusing for humans, the CNN consumes the states as matrices of numer-
ical values, so even small differences in the numerical values should be noticeable. It is an issue which
is currently investigated in the ongoing research regarding the state representation. Finally, the SKU
information type expresses which location in the logistics network is supplying the respective SKU.

The size of the segment type sizes gets calculated dynamically and, therefore, also the image size

Initial After an Action

Stock Keeping Site Customer Demand

Replenishment from Supplier On Demand Delivery from Another SiteSupplier

Site Customer Delivery Routes

Configuration (for one SKU)

1

2

3

1

2

3

771

id-8 MIC/MAEB 2017

Barcelona, July 4-7, 2017

varies for each logistics network. For the first segment row of the state representation, 5 transport rela-
tion segments are generated, one transport relation segment for each day of the workweek. Thus, not
only transport relations are extracted, but also transport frequencies. This is especially important regard-
ing the effects on the performance of the logistics network. The rest of the state representation is filled
with SKU information segments, one segment for each SKU in the simulation model. In the small lo-
gistics network presented here, there are 30 SKUs and therefore 30 SKU information segments. These
segments are placed in a 5 x 6 grid below the transport relation segments. Therefore, the state represen-
tation of the example contains 5 x 7 segments, each with a size of 8 x 8 pixels, which results in a concrete
images size of 40 x 56 pixels.

Figure 6: Segment types used in the state representation and examples of segments

As briefly mentioned above, the features represented in the state image can be directly derived from
the action types used. Therefore, there is a strong correlation between action types and segment types.
When introducing new action types to the system, such as actions regarding the machines or the working
staff, one would also have to extend the state representation with new segment types.

Regarding the reward, one would expect that the changes in the logistics system configuration de-
scribed above would cause several effects on the cost structure and performance of the logistics system.
If the customer demand, i.e. the system load, stays the same, the changes described above would prob-
ably influence the inventory costs, the transportation costs, the handling costs and also the delivery
performance, e.g. expressed by the β service level.

In order to generate a scalar reward signal for the reinforcement learning agent, a decrease of the
total costs after taking an action is translated into a positive reward, an increase is translated into a
negative reward. Furthermore, the difference in performance has to be incorporated into the rewards.
The authors decided to define a penalty cost which is multiplied with the percental change in the β
service level. If the service level increases, a bonus instead of costs is generated. The service level costs
should express the loss of customer orders in the future due to unsatisfied customers or the increase of
orders from satisfied customers.

The difference in the logistics costs and the costs associated to the β service level are summed up
and interpreted as the total costs caused by an action. Finally, these total costs are scaled between -1 and
1 to generate the final reward signal which is sent back to the agent. The scaling is done to get as close
as possible to the parameters used in the original DQN implementation.

5 Experimentation Scope and Preliminary Results

First experiments have been conducted with the implementation and the results look promising. For the
example presented in this paper, the authors assumed that one episode for the reinforcement learning
agent consists of taking three actions. Once the three actions have been taken, the simulation is reset to
its initial state and the agent can start a new episode. Therefore, the agent should gradually learn to take
the best three actions possible for the initial state of the logistics network. Parameter-wise the authors
stayed with the same parameters presented in the papers of Mnih et al. for these initial experiments.

The initial costs generated by the logistics network simulation were 73,897 € and the initial β service
level was 79.89 %. The reinforcement learning agent was trained with 1000 episodes, each consisting
of 3 actions, which resulted in up to 3000 evaluation runs. The total runtime of the experiment was 7 h.
As expected for a simheuristic approach, the bottleneck in terms of computing performance was not the
backpropagation through the CNN, but the simulation time needed for each evaluation run.

Transport Relation Segment Type

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8

TO

F
R
O
M

1 2 3 4 5 6 7 8
1 Stock Keeping
2 Initial Stock
3 Amount of Customers
4 Amount of Orders
5 Total Demand
6 Min. Replishment Size
7 Suppliers
8 ---

LOCATION

SKU Information Segment Type

772

MIC/MAEB 2017 id-9

Barcelona, July 4-7, 2017

The results of the experiments are shown in figure 7. As the reader can see from the average result
per episode, the agent was able to improve its strategy over the episodes. It finally developed a strategy
that reduced the simulated logistics network costs by 2,157 € and increased the simulated logistics ser-
vice level by 0.57 %. While the absolute improvements are not of major significance, the experiments
showed that the implementation of the system in general seams feasible.

Figure 7: Preliminary experimentation results

6 Conclusion and Outlook

The work presented in this paper is an important milestone towards the development of a decision sup-
port system which uses a discrete-event simulation and reinforcement learning to propose integrated
action combinations to managers of logistics networks. The implementation shows promising results,
while some aspects still remain open.

First of all, the authors aim to further research the scaling of the state representation for larger logis-
tics networks, gradually working towards networks with thousands of SKUs. Furthermore, it needs to
be investigated how the system performs once more action types are integrated into the system, which
could also affect the size of the state representation.

Another important aspect to be researched is the architecture of the CNN. Since the images fed to
the CNN are hand-crafted, a custom adjustment of the filter sizes could help to break down the dimen-
sions of larger state representations.

As mentioned before, the bottleneck in terms of computation time probably still remains the discrete-
event simulation, which also becomes slower for larger logistics networks. It is expected that, even if
the CNN becomes larger, the computation time needed for the backpropagation in the CNN will not
exceed the computation time of the simulation.

Another minor aspect which will be integrated in the future is to assign implementation costs to the
action types. These costs should be integrated into the reward for the agent to reflect the costs that would
be necessary to implement the action in the real logistics network.

References

[1] D. Achenbach. Process Model for Short Term Booking of Customized Products on Online Market
Places. JOEBM, vol. 3, 10:977–983, 2015.

[2] M.G. Bellemare, Y. Naddaf, J. Veness, M. Bowling. The Arcade Learning Environment: An Eval-
uation Platform for General Agents. Journal of Artificial Intelligence Research, vol. 47:253–279,
2013.

[3] Y. Bengio. Learning Deep Architectures for AI. FNT in Machine Learning, vol. 2, 1:1–127, 2009.
[4] M. Biesen, A. Tavakoli, T. Hegmanns. Managing Logistics Performance of Numerous Facilities

under Consideration of Facility-individual Preconditions. In Jones, C., editor, Proceedings of the
6th International Colloquium on Business & Management (ICBM), Prince of Songkla University,
Bangkok, Thailand, 2013.

[5] C. Bruns, T. Hegmanns. Performance Measurement System for a Changeable Stocking Strategy
in Distribution Systems of Commercial Enterprises. In Jones, C., editor, Proceedings of the 6th
International Colloquium on Business & Management (ICBM), Prince of Songkla University,
Bangkok, Thailand, 2013.

[6] F. Dross, M. Rabe. A SimHeuristic Framework as a Decision Support System for Large Logistics
Networks With Complex KPIs. In Wittmann, J; Deatcu, C., editors, Proceedings of the 22nd Sym-
posium Simulationstechnik (ASIM 2014), pages 247–254, HTW Berlin, Germany, 2014.

773

id-10 MIC/MAEB 2017

Barcelona, July 4-7, 2017

[7] I. Goodfellow, Y. Bengio, A. Courville. Deep Learning, 1. ed. MIT Press, Cambridge, Massachu-
setts, USA, 2016.

[8] K. Gutenschwager, K. Alicke. Supply Chain Simulation mit ICON-SimChain. In T. Spengler, S.
Voß, H. Kopfer, editors, Logistik Management, pages 161–178, Physica, Heidelberg, Germany,
2004.

[9] G.E. Hinton, R.R. Salakhutdinov. Reducing the Dimensionality of Data with Neural Networks.
Science (New York, N.Y.), vol. 313, 5786:504–507, 2006.

[10] A.A. Juan, M. Rabe. Combining Simulation with Heuristics to Solve Stochastic Routing and
Scheduling Problems. In Dangelmaier, W; Laroque, C; Klaas, A., editors, Simulation in Produk-
tion und Logistik 2013: Proceedings of the 15th ASIM Conference on Simulation in Production
and Logistics, pages 641–649, Paderborn, Germany, 2013.

[11] A. Krizhevsky, I. Sutskever, G.E. Hinton. ImageNet Classification with Deep Convolutional Neu-
ral Networks. In F. Pereira, C. Burges, L. Bottou, K. Weinberger, editors, Advances in Neural
Information Processing Systems 25 (NIPS 2012), Lake Tahoe, Nevada, USA, 2012.

[12] S. Lange, M. Riedmiller. Deep Auto-encoder Neural Networks in Reinforcement Learning. In
The 2010 International Joint Conference on Neural Networks (IJCNN), IEEE proceeding, pages
1–8, Barcelona, Spain, 2010.

[13] Y. Lecun, L. Bottou, Y. Bengio, P. Haffner. Gradient-based Learning Applied to Document Recog-
nition. Proc. IEEE, vol. 86, 11:2278–2324, 1998.

[14] S. Legg, M. Hutter. Universal Intelligence: A Definition of Machine Intelligence. Minds & Ma-
chines, vol. 17, 4:391–444, 2007.

[15] J.L. McClelland, D.E. Rumelhart. Parallel Distributed Processing: Explorations in the Microstruc-
ture of Cognition, 1. ed. MIT Press, Cambridge, Massachusetts, USA, 1986.

[16] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra et al. Playing Atari
with Deep Reinforcement Learning, NIPS Deep Learning Workshop, 2013.

[17] V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G. Bellemare et al. Human-level
Control through Deep Reinforcement Learning. Nature, vol. 518, 7540:529–533, 2015.

[18] N. Montfort, I. Bogost. Racing the beam: The Atari Video Computer System. MIT Press, Cam-
bridge, Massachusetts, USA, 2009.

[19] M. Rabe, F. Dross. A Reinforcement Learning Approach for a Decision Support System for Lo-
gistics Networks. In Yilmaz, L; Chan, W. K. V; Moon, I; Roeder, T. M. K; Macal, C; Rossetti, M.
D., editors, Proceedings of the 2015 Winter Simulation Conference (WSC), pages 2020–2032,
Huntington Beach, CA, USA, 2015.

[20] M. Rabe, F. Dross, A. Vennemann. A Procedure Model for the Credible Measurability of Data
Warehouse Metrics on Discrete-event Simulation Models of Logistics Systems. In Rabe, M;
Clausen, U., editors, Simulation in Produktion und Logistik 2015: Proceedings of the 16th ASIM
Conference on Simulation in Production and Logistics, pages 167–176, Dortmund, Germany,
2015.

[21] R. Ray. Supply Chain Management for Retailing. Tata McGraw-Hill Education, New Delhi, 2010.
[22] M. Riedmiller. Neural Fitted Q Iteration – First Experiences with a Data Efficient Neural Rein-

forcement Learning Method. In J. Gama, editor, Proceedings of the 16th European Conference
on Machine Learning (ECML 2005), pages 317–328, Springer, Berlin, 2005.

[23] B. Scholkopf. Artificial Intelligence: Learning to See and Act. Nature, vol. 518, 7540:486–487,
2015.

[24] Siemens PLM Software. Tecnomatix Plant Simulation. http://www.plm.automation.sie-
mens.com/de_de/products/tecnomatix/plant_design/plant_simulation.shtml.

[25] SimPlan AG. SimChain. http://www.simchain.net/.
[26] Stella: A Multi-Platform Atari 2600 VCS Emulator. https://stella-emu.github.io/.
[27] R.S. Sutton, A.G. Barto. Reinforcement Learning: An Introduction. MIT Press, Cambridge, Mas-

sachusetts, USA, 1998.
[28] TensorFlow. https://www.tensorflow.org/.
[29] The Arcade Learning Environment. http://www.arcadelearningenvironment.org/.
[30] J.N. Tsitsiklis, B. van Roy. An Analysis of Temporal-difference Learning with Function Approx-

imation. IEEE Trans. Automat. Contr., vol. 42, 5:674–690, 1997.
[31] C. Watkins. Learning from Delayed Rewards. Ph.D. thesis, Kings College, Cambridge, England,

1989.

774

	Proceeding 1
	Proccedings 2
	ISBN page
	main
	MIC Submissions
	Metaheuristics in Healthcare
	A GRASP ALGORITHM FOR SCHEDULING EMERGENCY ROOM PHYSICIANS
	Finance
	A Simulation-enriched Variable Neighborhood Search for the Stochastic Project Portfolio Selection Problem
	Variable Neighborhood Search
	Solving the Steiner Tree Problem in graphs with Variable Neighborhood Descent
	Metaheuristics in Cutting and Packing
	A heuristic approach for the Pallet Building and Loading Problem
	Metaheuristics in Nonsmooth Nonconvex Optimization and Applications
	Air Transportation and Airport Logistics
	A Simple and Efficient Metaheuristic for the Dynamic Flight Scheduling Problem
	A simheuristic approach for solving the Aircraft Recovery Problem with stochastic delays

	Metaheuristics in Retail Operations
	An ALNS for solving the MCVRP with Product-Specific Time-Windows Assignment
	Solution Approaches for the Consideration of Loading Constraints for MCVRP

	Tabu Search
	A tabu search algorithm for the multi-vehicle covering tour problem
	Tabu Search with Path-Relinking for the Quadratic Assignment Problem
	Dynamic Scalable Models in Simulation Optimization: Optimizing Heliostat Positions for Solar Power Tower Plants
	Variable neighborhood tabu search for the vertex bisection minimization problem
	Unrelated Parallel Machine Selection and Job Scheduling with the Objective of Minimizing Total Workload and Machine Fixed Costs, in Presence of Outsourcing

	Metaheuristics and Machine Learning
	Setting the Number of Simulation Runs in a Simheuristic Algorithm: a statistical-based approach

	Scheduling
	An efficient algorithm based on metaheuristic for the no-wait flowshop scheduling problem
	An efficient algorithm based on metaheuristic for the permutationt flowshop scheduling problem
	An Iterated Greedy-based Approach Exploiting Promising Sub-Sequences of Jobs to solve the No-Wait Flowshop Scheduling Problem
	Artificial Immunne Systems based Astronomy Scheduling
	A new migrating birds optimization algorithm to solve a permutation flowshop problem
	A Metaheuristic Approach for Scheduling Steelmaking and Casting Plants
	An Enhanced Iterated Greedy Metaheuristic for the Particle Therapy Patient Scheduling Problem
	A hybrid memetic algorithm for parallel machine scheduling problems with deteriorating effects
	Algoritmos Constructivos Mateheurísticos para Solucionar el Problema de Programación de Vehículos de Transporte Público de Pasajeros con Múltiples Depósitos
	A Hybrid Differential Particle Swarm Optimization Approach for Multi-objective Parallel Machine Scheduling Problem
	Predictive baseline schedule for electrical vehicles charging in dedicated residential zone parking
	Applying the Corridor Method to the Multi-Mode Resource-Constrained Project Scheduling Problem
	Metaheuristics for non-renewable resources constraints flow shop scheduling problems
	Multi-objective Model and Iterated Greedy Algorithm for Robust Permutation Flow Shop Scheduling in the presence of uncertainties
	Revisiting the Distributed Permutation Flowshop Problem
	A biased random-key genetic algorithm for the Multi-period, Multi-rate and Multi-channels with variable bandwidth Scheduling Problem
	A Genetic Algorithm for the Flexible Open Shop Scheduling Problem with Setup and Transportation Times
	Exploring Automatic Algorithm Design for the Hybrid Flowshop Problem
	Heuristics for the parallel machines scheduling problem with additional resources
	An ILS heuristic for a real-life ship scheduling problem
	A Comparison of Genetic Algorithm and Local Search Based Algorithms for Scheduling Recurring Radiotherapy Treatment Activities with Time Window Constraints and Optional Activities
	Scheduling for the Growing of Crops to Meet Demand
	A CLONALG-inspired algorithm with adaptive large neighborhood search for the multi-mode resource-constrained project scheduling problem
	HyperSpark: A Software Engineering Approach to Parallel Metaheuristics

	Timetabling
	A clique-based approach for the course timetabling problem

	Iterated Local Search
	The Graph Edit Distance Problem treated by the Local Branching Heuristic

	Automated Algorithm Design
	AMH: a new Framework to Design Adaptive Metaheuristics
	Revisiting Simulated Annealing: From a Component-Based Analysis to an Automated Design of Simulated Annealing Algorithms
	ADVISER+: Toward a Usable Web-based Algorithm Portfolio Deviser

	Transportation
	A parallel matheuristic for the technician routing problem with conventional and electric vehicles
	The two clustered multi depot pick up and delivery problem with time windows
	A Hybrid Heuristic for a Balanced Vehicle Routing Problem with Time Windows and Loading Constraints
	Combining real-time information with a variable neighborhood search metaheuristic for the inventory routing problem: a case study at UBIKWA systems
	A dual hub-and-spoke problem with fixed and flexible long-hauls
	A Large Neighborhood Search for a Rich Vehicle Routing Problem arising in the Steel Industry
	Comparison of trajectory-based metaheuristics for the Electric Vehicle Routing Problem
	Tactical Time Slot Management Problem with Split Deliveries
	An Adaptive Large Neighborhood Search for Relocating Vehicles in Electric Carsharing Services
	A biased random-key genetic algorithm for the car rental vehicle-reservation assignment problem
	A GRASP for the Tourist Trip Design with Clustered POIs
	Solving Multi-trip Vehicle Routing Problems with Backhauls, Time Windows, and Release Dates
	Scheduling a large fleet of rental vehicles using multi-neighbourhood local search
	An Adaptive Large Neighborhood Search for the Consistent Inventory Routing Problem
	Evolutionary Multi-Objective Optimization for the Multimodal Transport Problem
	Size Limited Iterative Method (SLIM) for Train Unit Scheduling
	Clustering is the key to security related routing problems
	Sustainable Urban Freight Transport Considering Multiple Capacitated Depots
	A Heuristic for the Period Vehicle Routing Problem with Inventory
	Simheuristics-based selection of the optimal production strategy for a manufacturing facility under the influence of corrective maintenance operations

	Metaheuristics in Education
	Introducing Metaheuristics in an e-learning Course on Distributed Systems
	Teaching metaheuristics online: experiences at the Open University of Catalonia

	Logistics and Supply Chain Management
	The Vehicle Routing Problem with Private fleet and multiple common Carriers: solution with hybrid metaheuristic algorithm
	Metaheuristics for the vehicle routing problem with time windows
	A mathematical programming approach to support pro-active routing on the emergency dispatching problem
	Green Heterogeneous Vehicle Routing Problem with Multiple Driving Ranges
	Heuristic solutions to the Probabilistic p-Center Problem
	Combining DES with metaheuristics to improve scheduling and workloads in parcel transshipment terminals
	Solving a supply chain design problem by the krill herd algorithm
	A hybrid metaheuristic approach for the two-dimensional loading vehicle routing problem with heterogeneous fleet (2L-HFVRP)
	An iterated local search precedure for the green vehicle routing problem with heterogeneous fleet and time windows

	Simheuristics
	A simheuristic for bi-objective permutation flow shop problem with stochastic processing times
	A Concept to Combine PSO with Industrial Tooling Machine Setup Issues as Practical Approach for Simulation Based Optimization
	A Simheuristic Algorithm for the Uncapacitated and Stochastic Hub Location Problem
	Simulation-based headway optimization of the Viennese urban subway network
	A simulation-optimization approach for the single-period inventory routing problem with stochastic demands
	Combining a Discrete-event Simulation Model of a Logistics Network with Deep Reinforcement Learning

	Metaheuristics in Cloud Computing
	Evolutionary planning for IaaS virtual brokering in the cloud
	Evaluating a Two-Phase Virtual Machine Placement Optimization Scheme for Cloud Computing Datacenters

	GRASP
	A GRASP with restarts heuristic for the Steiner traveling salesman problem
	A GRASP for the Max Cut-Clique Problem
	Introducing biased randomization in GRASP
	GRASP for the Weighted Target Set Selection problem
	Generalized GRASP for Mixed-Integer Nonlinear Optimization

	Metaheuristics in Agriculture and Forest Management
	Optimal scheduling of production tasks in an animal feed mill

	MIC-Gen
	Gravitational search algorithm (GSA) with linearly decreasing gravitational constant for parameter estimation of photovoltaic cells
	A mapping technique to improve solutions for a Multi-Objective Resource Constraint Project Scheduling Problem
	An iterative heuristic algorithm for the Aircraft Landing Problem with multiple runways
	A combined approach for analysising heuristic algorithms
	A percentile transition ranking algorithm applied to knapsack problem
	Subdividing Labeling Genetic Algorithm: A New Method for Solving Continuous Nonlinear Optimization Problems
	A local search-based multi-objective metaheuristic for biclustering on heterogeneous data
	A metaheuristic algorithm using chaotic neurodynamics with degree information for the dynamic combinatorial optimization problem: a packet routing problem
	A Population-Based Iterated Greedy Algorithm for the Knapsack Problem with Setup
	A differential evolution algorithm for single model U-type assembly line balancing problem
	IDENTIFYING THE CRITICAL NEEDS OF PRODUC-TION AND MAINTENANCE AS INTEGRATED SYS-TEMS, IN ORDER TO BUILD A MANAGEMENT TOOL
	Strategic planning of maintenance work of a large-scale tramway network
	Grid-Based Parameter Adaptation in Particle Swarm Optimization
	Optil.io Platform: Evaluation as a Service for Metaheuristics
	Extending time-to-target plots to multiple instances and targets: mttt-plots
	TSP Neighbourhood Reduction with POPMUSIC
	Minimum Labelling bi-Connectivity
	On the minimum quartet tree cost problem
	Hybridizing Particle Swarm Optimization Variants on Continuous Optimization Functions
	An Investigation of the Generalized Assignment Problem from the Perspective of Generalized Optimization
	Computing Short Edge-Flipping Sequences Between Triangulations: a Heuristic Approach
	A hybrid algorithm based on Particle Swarm Optimization and Tabu Search for the Maximum Diversity Problem
	Can single-objective metaheuristics efficiently solve multi-objective problems?
	An O(|E|) -linear Model for the Maxcut Problem
	Optimization of dynamic pricing issues in manufacturing industry: coordination of pricing and production decisions
	On the comparison of CMSA versus LNS for solving Combinatorial Optimization problems with different solution sizes
	A Hybrid Random Key Symbiotic Organism Search Algorithm for the Quadratic Assignment Problem
	A Multi-Start Algorithm with Intelligent Neighborhood Selection

	Sports and Metaheuristics
	Referee Assignment for a Basketball League with Multiple Divisions using Local Search

	Matheuristics
	A Matheuristic for the Swap-body Vehicle Routing Problem
	A Large Neighborhood Search Matheuristic for Tourist Trip Design Problems
	A Hybrid Method for Multi-Product Continuous Plant Scheduling
	Client-side combinatorial optimization
	An evolutionary algorithm for harmonic music composition
	Using mixed integer programming techniques within a large neighborhood search as a hybrid metaheuristic for the multi-mode resource investment problem
	Matheuristics for a VRPTW with competence constraints
	Matheuristics for the problem of pre-positioning emergency supplies
	Solving the Steiner Tree Problem in Graphs by Chaotic Neural Network using Key Path Neighborhood
	Meta- and Matheuristic Approaches for the Symmetric Quadratic Traveling Salesman Problem
	Programación de un sistema portuario implementando algoritmos genéticos con un modelo de simulación

	Industrial applications
	Tabu search and matheuristic algorithms for solving an integrated flow shop and vehicle routing problem

	MAEB Submissions
	Bioinformática usando Metaheurísticas, Algoritmos Evolutivos y Bioinspirados
	Integrando Paralelismo en la Metaheurística Indicator-Based Multiobjective Bat Algorithm para Reconstrucción Filogenética
	Inteligencia Colectiva de Abejas Multiobjetivo para Alinear Múltiples Secuencias Biológicas
	General
	Un algoritmo de programación genética multivista para inducir clasificadores basados en reglas en contextos semi-supervisados
	¿Existe una mejora continua entre los algoritmos ganadores de las competiciones de optimización real del IEEE CEC?
	Project Portfolio Selection with Stochastic Inputs - A Simheuristic VNS Approach
	Multi-Start Methods for the Capacitated Clustering Problem
	Metaheurísticas en Producción
	Aplicación de algoritmos RRT en la planificación de movimientos óptimos en robótica
	Metaheuristics in Port Logistics and Related Problems
	Heuristic and metaheuristic algorithms for a multi-port container ship stowage problem
	A GRASP algorithm for the container stowage slot planning problem
	A Biased Random-Key Genetic Algorithm for the Berth Allocation and Quay Crane Assignment Problem
	Programación de un sistema portuario implementando algoritmos genéticos con un modelo de simulación

	Proceedings last pages

